This document is published for the purpose of providing general information for the evaluation of the design, performance and equipment of the Bonanza G36. It is not a contractual agreement unless appended to an aircraft purchase agreement.

Contents

1. General Description ...2
2. General Arrangement ..3
3. Design Weights and Capacities4
4. Performance ..4
5. Structural Design Criteria4
6. Fuselage ..4
7. Wing ..5
8. Empennage ..5
9. Landing Gear ...5
10. Powerplant ..5
11. Propeller ..6
12. Systems ..6
13. Flight Compartment and Avionics7
14. Interior ...12
15. Exterior ...12
16. Additional Equipment ...12
17. Emergency Equipment ...12
18. Documentation & Tech Publications13
19. Maintenance Tracking Program13
20. New Aircraft Limited Warranty13
21. Crew Training Agreement15
INTRODUCTION

This document is published for the purpose of general information for the evaluation of the design, performance and equipment of the Beechcraft Bonanza G36 aircraft. Should more detailed data be required, it can be obtained by contacting:

Beechcraft Corporation
P.O. Box 85
Wichita, Kansas 67201-0085
Attention: Contracts Administration, Dept. 191
Telephone: 316.676.7111
Fax: 316.676.1910

This document describes only the Bonanza G36 aircraft, serial numbers E-4063 thru E-4080, its powerplant and standard equipment. Also included are the warranties applicable to the Bonanza G36 aircraft, Continental Motors engine, Garmin Avionics, Hartzell propeller as well as the Bonanza G36 crew training agreement. In the event of any discrepancy between this document and the Aircraft Purchase Agreement to which it may be appended, terms specified in the Aircraft Purchase Agreement shall govern.

Engine and Avionics warranties are subject to change at the discretion of the manufacturer. Beechcraft Corporation does not warrant engines or avionics. Should the engine or avionics warranty reflected in this document not be the current warranty provided by the manufacturer, Beechcraft Corporation disclaims any liability to Buyer for any such error.

The term “Aircraft” as used in this document and in the Aircraft Purchase Agreement into which it may be incorporated by reference shall unless otherwise designated include the entire Bonanza G36 aircraft and all of its parts, components and related publications, including manuals, as more fully described in this Specification and Description.

Throughout this document, Beechcraft Corporation reserves the right to revise the ‘Specification and Description’ whenever occasioned by product improvements, government regulations or other good cause as long as such revisions do not result in a significant reduction in performance standards.

Copyright © 2015 Beechcraft Corporation.
All rights reserved.

1. GENERAL DESCRIPTION

The Bonanza G36 is a single engine aircraft utilizing an all metal airframe. The aircraft has provisions for up to six occupants and their baggage. The aircraft is certified for single pilot operation.

The Bonanza G36 is powered by a Continental Motors IO-550-B engine with a Hartzell constant-speed three bladed propeller mounted on the nose of the aircraft.

The Bonanza G36 is certified in accordance with CAR Part 3 Utility Category.

Dimensions

- Overall Height: 8 ft 7 in. (2.62 m)
- Overall Length: 27 ft 6 in. (8.38 m)

Wing

- Span (overall): 33 ft 6 in. (10.21 m)
- Area: 181 sq. ft (16.81 sq. m)
- Sweep (at 25% chord): 0.0 deg
- Dihedral: 6.0 deg

Horizontal Tail

- Span (overall): 12 ft 2 in. (3.71 m)
- Dihedral: 0.0 deg

Cabin

- Length (including cockpit): 12 ft 7 in. (3.84 m)
- Height (max): 4 ft 2 in. (1.27 m)
- Width (max): 3 ft 6 in. (1.07 m)

Entry Doors

- Fwd Cabin Door: 37 in. wide x 36 in. high (0.94 m. wide x 0.91 m. high)
- Aft Utility Door: 45 in. wide x 35 in. high (1.14 m. wide x 0.89 m. high)
2. GENERAL ARRANGEMENT

33 ft 6 in (10.21 m) Wing Span
9 ft 7 in (2.92 m) Track
27 ft 6 in (8.38 m) Overall Length
12 ft 2 in (3.71 m) Tail Span
8 ft 7 in (2.62 m) Overall Height
3. DESIGN WEIGHTS AND CAPACITIES

- Maximum Ramp Weight 3,663 lb (1,665 kg)
- Maximum Take-off Weight 3,650 lb (1,659 kg)
- Maximum Landing Weight 3,650 lb (1,659 kg)
- Basic Empty Weight * 2,630 lb (1,193 kg)
- Fuel Capacity (Useable) 444 lb (202 kg)
 (@ 6.0 lb per U.S gallon)

* Estimated Basic Operating Weight includes standard interior, prop de-ice, air conditioning, avionics, unusable fuel and oil.

4. PERFORMANCE

All performance data is based on a standard aircraft and International Standard Atmospheric (ISA) conditions. Take-off and landing lengths are based on level, hard surface, dry runways with zero wind.

- Range (-3%) 910 nm (1,685 km)
 (1 pilot + 2 passengers, VFR. Range allows for taxi, take-off, climb, cruise, descent and VFR fuel reserve of 45 minutes at Max. Range Power)
- Stall Speed (Flaps Down) 58 kt (107 km/hr) IAS
 (at 3,650 lb/1,659 kg)
- Service Ceiling 18,500 ft (5,639 m)
- Take-off Field Length 1,913 ft (583 m)
 (Sea Level, ISA, 3,650 lb. / 1,659 kg.)
- Landing Distance 950 ft (290 m)
 (Sea Level, ISA, 3,650 lb. / 1,659 kg.)
- High Speed Cruise Speed (-3%) 176 kt (326 km/hr)
 (ISA, 6,000 ft (1,829 m) altitude, Max. Cruise Power
 25 In. Hg (or full throttle) @ 2,500 rpm)

5. STRUCTURAL DESIGN CRITERIA

The Bonanza G36 wing and fuselage are of conventional semi-monocoque construction. It has fully cantilevered wings and empennage. Most of the structures are fabricated of high strength aluminum alloy. Steel and other materials are used as needed. The robustness of the design philosophy has been validated over thousands of hours of operation of airplanes in the fleet. Continuing structural integrity is ensured through an inspection program and appropriate maintenance action. The aircraft structure is divided into three major components, the fuselage, wing and empennage.

Limit Speeds
- Never Exceed V_{ne} 205 KIAS (380 km/hr)
- Max Structural Cruising V_{no} 165 KIAS (306 km/hr)
- Maneuvering V_A 141 KIAS (261 km/hr)

Flap Extension Speeds
- V_{FE} (Approach) 154 KIAS (285 km/hr)
- V_{FE} (Full Down) 124 KIAS (230 km/hr)

Landing Gear Operating and Extension Speeds
- V_{LE}/V_{LE} (retraction/extension) 154 KIAS (285 km/hr)

CG Range
- Forward Limit to 3,100 lb (1,409 kg) 74 in
- Forward Limit to 3,650 lb (1,659 kg) 81 in
- Aft Limit (at all weights) 87.7 in

6. FUSELAGE

The fuselage is fabricated of high strength aluminum alloy, with appropriate use of steel and other materials. The aircraft structure uses traditional methods of aircraft design and validated through full scale fatigue testing with no published life limits.

The fuselage is shaped to provide optimized cabin room and passenger comfort. A maximum internal cabin width of 3 ft 6 in. (1.07 m) and maximum cabin height of 4 ft 2 in. (1.27 m) is provided.

Cabin
The cockpit seating area, passenger seating area and rear baggage area comprise the cabin portion of the fuselage. The pilot’s entry door is located on the forward right side of the fuselage while the passengers enter the cabin through the aft utility door on the right rear side of the fuselage.

The standard seating configuration consists of club seating in the cabin, with the 3rd and 4th seats facing aft and the 5th and 6th seats facing forward.

Utility Doors
The utility doors, located on the aft right side of the cabin, provide for loading and unloading of passengers and baggage. The aft door must be closed first. The forward door cannot be closed until the latch of the aft door is latched and flush with the edge of the door. After the forward door is closed it can be latched from the outside by rotating a half-moon shaped handle to the closed position. A conventional handle of the inside of this door provides for opening or closing from the inside.
Baggage Compartment
The baggage compartment is accessible through the utility doors on the right side of the fuselage. The baggage area extends aft of the rear seats.

Tail Section
The tail section contains the emergency locator transmitter.

Windshield and Cabin Windows
The windshield and cabin windows are Plexiglas. The windshield is a one-piece wrap-around style. Four side windows are located in each side of the fuselage. The pilot’s side window incorporates a spring-latched weather window. The forward square passenger windows may be opened for ground ventilation and emergency egress.

7. WING
The wing is of semi-monocoque construction incorporating dual spar structures from wing tip to wing tip. The front and rear spars are similar in construction consisting of upper and lower cap extrusions, stiffeners and webs. The inboard section of each spar consists of a combination of channel fittings, assembled back to back, made from 7075 aluminum plate and forging for the front and rear spar fittings. The wings are attached to the wing center section at these fittings using eight bolts. Flaps and ailerons are installed on the wing.

The flaps are hinged to the trailing edges of the wing. The flaps consist of a single spar, ribs, side plates and skins.

The wing flaps are operated using an electric flap motor. The flap system is operated by a flap control lever located on the co-pilots sub-panel. The flap control lever has three positions: Up (0°), Approach (12°) and Down (30°).

A ‘two-in-one’ Position/Anti-collision light is located in each wingtip.

8. EMPENNAGE
The empennage consists of a vertical stabilizer and a fixed incidence horizontal stabilizer. Elevators are attached to the trailing edge of the horizontal stabilizer and are operated through a cable/pulley assembly connected to the control column. The rudder is attached to the trailing edge of the vertical stabilizer. A rudder trim tab is attached to the lower trailing edge of the rudder.

A red flashing beacon is located on top of the vertical stabilizer.

9. LANDING GEAR
The Bonanza G36 is equipped with retractable tricycle landing gear. The main landing gear uses conventional air over oil struts and retracts inwards into the wing. The nose gear uses a conventional air over oil shock strut and retracts aft into the nose section. The landing gear is electrically controlled and actuated and is enclosed by mechanically actuated doors.

The landing gear position and warning system provides visual and aural indications of landing gear position. Three green indicator lights are located adjacent to the landing gear control handle.

Alternate landing gear extension is accomplished by a manual system that requires the landing gear to be wound down using a crank handle behind the front seats.

Nosewheel Steering
Nosewheel steering is mechanically actuated by the rudder pedals to provide directional control on the ground. The minimum wing tip turning radius, using partial braking action is 27 feet 6 inches.

Brakes
The airplane is equipped with hydraulically operated brake assemblies, one at each main gear wheel. The brakes are applied by toe pressure on the pilot’s or co-pilot’s rudder pedals. The parking brake T-handle control is located on the lower left sub-panel.

10. POWERPLANT
The Bonanza G36 is powered by one Continental Motors Corporation model IO-550-B, normally aspirated, fuel-injected, direct drive, air-cooled, horizontally opposed, 6-cylinder, 550-cubic-inch displacement, 300 horsepower engine.

Engine starts may be made using the aircraft battery or external power.

Throttle, Propeller and Mixture Controls
The control levers are grouped along the upper portion of the pedestal. Pushing forward on a control lever increases its appropriate function, pulling back decreases it. The knobs on the levers are shaped to standard FAA configuration so they can be identified by touch. The controls are centrally located for ease of operation from either the pilot’s or copilot’s seat.

Cowl Flaps
The cowl flaps are controlled by a manual control lever located on the center console. The cowl flap is closed when the lever is in the up position and open when the lever is down.
11. PROPELLER

The Bonanza G36 is equipped with a Hartzell constant-speed, variable pitch propeller, with three aluminum alloy blades.

Propeller RPM is controlled by a governor which regulates hydraulic oil pressure to the hub. A control lever on the center pedestal allows the pilot to select the governor’s RPM range.

If engine oil pressure is lost, the propeller will go to the full high RPM position. This is because propeller low RPM is obtained by governor-boosted engine oil pressure working against the centrifugal twisting moment of the blades.

12. SYSTEMS

Flight Controls
Dual flight controls are provided. The control wheels are interconnected and provide aileron and elevator control. The primary control system is of conventional design and is manually operated through control cables, push-pull rods and mechanical linkages providing pitch, roll and yaw. Pitch attitude of the aircraft is controlled by the elevators. Roll is controlled through the ailerons.

The secondary control system provides manual and electric trim for the pitch system and roll trim from the manually operated roll trim surfaces.

Flaps are attached to the rear spar and hinged to allow downward movement. The wing flaps are electrically actuated. The flap system is controlled by a flap control lever located on the center pedestal.

Fuel System
The Bonanza G36 features a conventional, capacity fuel system requiring minimum management.

The engine is designed to operate on aviation gasoline grade 100LL (blue) or grade 100 (green). However, the use of grade 100LL is preferred.

The fuel capacity consists of two 40-gallon cells (37 gallons usable.) A visual measuring tab is attached to each filler neck of each individual cell.

The fuel system is drained at 3 locations: one under each wing just outboard of the fuselage, and a system low spot drain in the bottom of the fuel selector valve. These fuel drains are snap-type valves which are actuated by pushing up and twisting on the valve and then releasing when the desired amount of fuel has been drained.

Electrical System
The airplane electrical system is a 28-vdc (nominal) system with the negative lead of each power source grounded to the main airplane structure. DC electrical power is provided by the following sources.

Battery 1 is a 10 amp-hour, 24 volt, lead acid battery located on the right forward side of the firewall. Battery 2 is a 3.5 amp-hour, 24 volt. Sealed lead acid battery located on the cabin side of the firewall.

Alternator 1 is a 100-amp, 28.5 volt, gear-driven alternator located in from of the right forward cylinder. The alternator will deliver 100 amps at 2300 RPM and above. It is capable of supplying power to the entire electrical system. Alternator 2 is a 20-amp, 28.5 volt, gear driven alternator located at the rear of the engine. The alternator is capable of supplying power only to Bus 2.

Standby Power for the Standby Attitude Indicator – a sealed lead acid battery is attached to the back of the Standby Attitude Indicator. If power is lost to Bus 1, (or to Left Circuit Breaker Panel 1B powered by Bus 1) this battery will power the standby attitude indicator for a minimum of one hour if the battery is fully charged.

The electrical system is protected by current limiters, circuit breakers and circuit breaker type switches.

All exterior lights are Light Emitting Diode (LED) type.

External Power Receptacle
The external power receptacle is located on the right side of the engine cowling, connecting a 28-vdc external power unit to the airplane.

Cabin Environment
The environmental system consists of air conditioning, heating and ventilation systems, and their associated controls.

Air Conditioning and Heating
Cabin temperature control is provided by a fully-automatic climate control system. Conditioned air is supplied by a vapor cycle air conditioning system which utilizes an engine-driven compressor, in conjunction with condenser and evaporator units installed inside the tail cone. It is approved for operation in all phases of flight, including takeoff. Both cabin cooling and heating are controlled by a fully-automatic Electronic Control Unit.
The control unit has "set and forget" functionality, allowing the operator to select the desired cabin temperature, which will be automatically maintained. The system automatically switches between conditioned or heated air as necessary to maintain the selected temperature. Conditioned air is distributed to aft cabin passengers through the overhead PSU panel, while cockpit occupants receive air via enlarged overhead vents for maximum cooling. Heated air is distributed by firewall and aft spar cover vents. Aft cabin passengers have their own heat setting available to them on the ceiling console. The new control is a rocker switch with an LED indicator of heat position. This is accessible to the aft cabin passengers as well as being within reach of the pilot, just behind the ceiling speaker.

13. FLIGHT COMPARTMENT AND AVIONICS

The Bonanza G36 is certified for single pilot operation. The Garmin G1000 Integrated Avionics System is a fully integrated flight, engine, communication, navigation, autopilot and surveillance instrumentation system. The system consists of a Primary Flight Display (PFD), Multi-Function Display (MFD) and Audio Panel (GMA) that make up the instrument panel. Line Replaceable Units (LRUs) that are included in the above displays and controls the following:

- A single Air Data Computer (ADC)
- A single Attitude and Heading Reference System (AHRS)
- A single Engine/Airframe Processing Unit (GEA)
- Two Integrated Avionics Units (GIA)
- A single Transponder
- A single Magnetometer
- A Flight Director/Autopilot System that is integral to the GIA and the autopilot servo units.

Garmin Synthetic Vision

The Garmin Synthetic Vision (SV) system blends information about the aircraft’s position with topographic databases to create and display 3D images which are displayed on the PFD. Land, water and sky are differentiated with shading and textures that are similar to the topographical colors found on the multi-function display (MFD) moving map. SV works to alert pilots of potential ground hazards by displaying terrain and obstacles which pose a threat to the aircraft with appropriate TAWS alert coloring.

Features of the Synthetic Vision system include:

- Obstacles: Enlarges obstacle(s) as aircraft approaches; TAWS based colors are used when the required obstacle clearance is not met or in the case of potential obstacle impact.
- Traffic: TCAS traffic symbology represented in 3D that changes size relative to range.
- Flight Path Marker: Displays projected path of the aircraft.
- Zero Pitch Line: Distinguishes aircraft's altitude in relation to nearby terrain.
- Gridlines: Drawn on the terrain surface.
- Runways: Runway designations and thresholds are superimposed on terrain data.
- Airport Signs: Depicts identifier of nearby airports

Primary Flight Display System (PFD)

- Garmin Display Unit (GDU 1040)

The Primary Flight Display (PFD) is a 10.4 inch Liquid Crystal Display (LCD). It displays airspeed, altitude, and heading information in a traditional format. A vertical speed display is located to the right of the altitude display. A crew alerting window and annunciation window are available for display. Slip information is shown as a trapezoid under the bank pointer. Rate of turn information is shown on the scale above the compass rode. Full scale deflection is equal to a standard rate turn.
1. Primary Flight Display (PFD)
2. Master Audio Panel
3. Standby Compass
4. Multi-Function Display (MFD)
5. Standby Airspeed Indicator
6. Standby Attitude Indicator
7. ELT switch
8. Standby Altimeter
9. Storage Compartment
10. Circuit Breaker Panel
11. Flap Position Indicators
12. Landing Gear Position Indicators
13. Pilot Sub-panel
The PFD incorporates controls for communications, navigation, altimeter control and Flight Management functions. Trend vectors are shown on the airspeed and altimeter displays as a magenta line which predicts the airspeed or altitude 6 seconds in the future assuming the current rate of change in maintained. The turn rate indicator also functions as a trend indicator on the compass scale.

Multi-Function Display System (MFD)
- Garmin Display Unit (GDU 1045)

The Multi-Function Display (MFD) is a 10.4 inch Liquid Crystal Display (LCD). It displays engine data, maps, terrain, traffic and topography displays, and flight planning and progress information. It also controls and displays weather data link information, lightning strike information and audio entertainment features. The display unit is identical to the PFD and contains the same controls plus the addition of autopilot controls. Discrete engine sensor information is processed by the Garmin Engine/Airframe (GEA) sub-system. When an engine sensor indicates a value outside the normal operating range, the legend on the MFD will turn yellow for the caution range and red for the warning range.

Master Audio Panel (GMA)
- Garmin Master Audio Panel (GMA 1347)

The audio panel provides pilot and copilot microphone selection of communication radios and audio selection for all communication and navigation receiver radios. The audio panel has volume controls for both pilot and copilot. There are controls for speaker on/off selection and interphone mode selection. If power is lost to the audio panel, the pilot’s headset and microphone are connected directly to COMM 1. An internal clearance recorder can play back the last 2½ minutes of received COMM audio. A marker beacon receiver is also contained within the audio panel with visual information provided on the PFD.

Integrated Avionics Units (GIA)
- Garmin Integrated Avionics Unit (GIA 63/63W)

Two Integrated Avionics Units are installed. Both GIAs provide interfaces to all Line Replaceable Units (LRUs) in the G1000 system. Each GIA contains a VHF COMM, VHF NAV, glideslope and WAAS enabled GPS functions including LPV/LNAV/VNAV. GIA 1 provides autopilot mode control and servo control and monitoring. GIA 2 provides servo control and monitoring.

Air Data Computer (ADC)
- Garmin Air Data Computer (GDC 74A)

The Air Data Computer is connected to the pitot and static air system and an Outside Air Temperature (OAT) probe which is located on the bottom of the left wing. The ADC provides OAT, airspeed, altitude and vertical speed for pilot displays and Flight Management System (FMS) functions.

Magnetometer (GMU)
- Garmin Magnetometer Unit (GMU 44)

The Magnetometer senses the earth’s magnetic field and provides this information to the AHRS for processing to determine the airplane’s magnetic heading. The GMU 44 is located in the left wingtip area and is powered by the AHRS.

Attitude and Heading Reference System (AHRS)
- Garmin Attitude and Heading Reference System (GRS 77)

The Attitude and Heading Reference System provides pitch, roll, heading and angular rate information for pilot display and for FMS calculations.

Engine/Airframe Interface Unit (GEA)
- Garmin Engine/Airframe Interface Unit (GEA 71)

The Engine/Airframe Interface Unit provides input and output for engine and airframe sensors and systems. The GEA has inputs for the following signals:
 - Manifold Absolute Pressure (MAP)
 - Engine RPM
 - Fuel Flow
 - Six Cylinder Head temperature (CHT) probes
 - Six Exhaust Gas Temperature (EGT) probes
 - Oil Temperature
 - Oil Pressure
 - Alternator 1 Load
 - Alternator 2 Load
 - Bus 1 Voltage
 - Bus 2 Voltage
 - Fuel Quantity Left Tank
 - Fuel Quantity Right Tank
 - Starter Engaged
 - Utility Door Switch
 - Air Conditioning Condenser position
This information is used to display Engine and System information on the left side of the MFD and alerts in the annunciation window of the PFD. A discrete output from the GEA is used to control the bus tie relay that connects electrical Bus 1 to Bus 2.

Engine Indicating System

Engine information is available in a vertical arrangement along the left side of the MFD. In reversionary mode, this information will also be generated along the left side of the PFD.

Engine Display

The engine display page is the default display and shows left and right manifold pressure, engine RPM with prop-sync, fuel flow, cylinder head temperature, oil temperature, oil pressure, alternator load, fuel tank quantity.

The left and right manifold pressure is the absolute pressure in the engines manifold and is calibrated in inches of mercury. A circular scale with a pointer provides overall manifold indication with numeric value just below. A manifold pressure sensor located on each induction manifold is wired to the left and right GEA units for display information. By observing the manifold pressure and adjusting the propeller and throttle controls, the power output of the engine can be adjusted.

Fuel flow is indicated on a linear scale with a numeric readout in gallons per hour above and to the scale left and right. A turbine rotor installed in the fuel line rotates in proportion to the fuel flow.

Cylinder head temperature is indicated on a linear scale with a left and right indicator. The hottest of the six cylinders for each engine is displayed and is identified by the numeric value inside the pointer. All six cylinder heads for each engine have temperature probes that are wired to the left and right GEA units. These can be displayed by accessing the LEAN engine page.

Oil temperature is indicated on a linear scale and is sensed as it enters each engine from the oil cooler. The sensors are wired to the left and right GEA for display. Numeric temperature value is displayed on the SYSTEM engine page.

Oil pressure is sensed at the back of each engine off a port below the oil coolers and wired to the left and right GEA for display. The display is linear, with a numeric pressure value available on the SYSTEM engine page.

Alerting System

The G1000 provides an Annunciation window and an Alerts window on the PFD to inform the pilots of Warning Alerts, Caution Alerts, Advisory Alerts and Messages that may occur during the operation of the airplane. Both windows are also available on the MFD to provide the same notifications when the MFD is operating in reversionary mode.

When an alert occurs, three things happen simultaneously.

i). The ALERTS softkey will assume a new label and color depending on the level of the alert. The softkey label will change to a red WARNING label for warning alerts, a yellow CAUTION label for caution alerts and a white ADVISORY label for advisory alerts. The label will also assume a flashing mode.

ii). An aural tone will be provided for Warning Alerts and Caution Alerts.

iii). An annunciation with the same color as the alerts label is displayed in the Annunciation Window.

Autopilot

- Garmin Automatic Flight Control System (AFCS) (GFC 700)

The GFC 700 AFCS consists of the following components:

i). The following mode control keys on the MFD:

- AP (Autopilot engage/disengage)
- YD (Yaw Damp engage/disengage)
- FD (Flight Director On/Off)
- HDG (Heading Mode On/Off)
- NAV (Nav Mode On/Off)
- APR (Approach Mode On/Off)
- ALT (Altitude Mode On/Off)
- VNV (Vertical nav mode Selects/Deselects (if installed)
- FLC (Flight Level Change Mode On/Off)
- NOSE UP and NOSE DN (vertical mode reference change)

ii). A two-segment pitch trim, switch located on the left side of the pilots control trim.
iii). A red autopilot-disconnect and pitch-trim-interrupt switch (AP DISC/TRIM INTER) located on the left side of the pilot’s control wheel. Pressing this switch also acknowledges a manual or automatic autopilot disconnect by cancelling the tone and flashing AP annunciator.

iv). A Control Wheel Steering Switch (CWS) located on the left side of the pilot’s control wheel.

v). A Go-Around switch located on the left side of the throttle.

vi). Servos with autopilot processing logic in the pitch, pitch trim and roll control systems. A servo with independent processing logic for the Yaw Damp function.

vii). Servo mounts and brackets.

viii). Flight Director processing logic is contained in the two integrated Avionics Units.

ix). The AFCS also utilizes the PFD/MFD mounted altitude preselect knob (ALT), heading select knob (HDG) and course select knob (CRS) associated with the G1000 system.

Transponder

- Garmin Transponder (GTX 33 ES)

The Transponder is a solid state transponder that replies to Mode A (4096 codes), Mode C and Mode S interrogations. The GTX 33 ES (Extended Squitter) provides ADS-B Out and ADS-B ‘traffic in’ capability and works in conjunction with the GTS 820 Traffic Advisory System to provide the pilot with real time traffic information.

Traffic Advisory System

- Garmin GTS 820 Traffic Advisory System

The GTS 820 Traffic Advisory System with dual directional antennas provides accurate, dynamic surveillance of nearby transponder-equipped aircraft with real time display on the PFD and spoken audio alerts to help pilots see and respond instantly to potential flight path intrusions.

Weather Datalink

- Garmin GDL 69A Weather Datalink

The GDL 69A Weather Datalink is a remote sensor that receives broadcast weather data from a service of XM Satellite Radio for display on the MFD providing high-resolution NEXRAD weather data, METARs (in graphical or textural format), TAFs, TFRs, Winds Aloft (at altitude), etc.

Terrain Awareness and Warning System (TAWS)

The Garmin TAWS is a Class B system as defined by TSO-C151b and provides the following functions.

i) Forward Looking Terrain Avoidance (FLTA) alerts which include:

- Reduced Required Terrain (RTC) and Obstacle (ROC) clearance cautions and warnings.
- Imminent Terrain (ITI) and Obstacle (IOI) Impact cautions and warnings.

ii). Premature Descent Alerts (PDA)

iii). The following basic Ground Proximity Warning System (GPWS) functions:

- Excessive Descent Rate (EDR) Alert
- Negative Climb Rate (NCR) After Takeoff alert
- “Five-Hundred” Aural Alert

Standby Instruments

- Electric Standby Attitude Indicator

The standby attitude indicator is located on the right side of the instrument panel and is normally powered by the Right Bus through a 3-amp circuit breaker located on the pilot’s circuit breaker panel.

- Standby Airspeed Indicator

A standby mechanical airspeed indicator is mounted on the right side of the instrument panel. The indicator is connected to the airplane’s pitot and static systems along with the Air Data Computer. The airspeed indicator remains operational in the event of complete electrical failure and will also operate with the alternate static source.

- Standby Altimeter

A standby mechanical altimeter is located on the right side of the instrument panel. It is connected to the airplane’s normal and alternate static systems along with the Air Data Computer and is independent of the airplane’s electrical system except for lighting.

- Standby Compass (Magnetic Compass)

A standby compass is a self contained, non-stabilized compass that will provide magnetic heading should the electric heading reference fail from the Attitude and Heading Reference System (AHRS) or become unavailable from a loss of electrical power.
Emergency Locator Transmitter

- Artex ME406 Emergency Locator Transmitter

The Emergency Locator Transmitter (ELT) System operating on 121.5 and 406 MHz. The system consists of the ELT transmitter located in the aft fuselage area, an antenna mounted on the aft fuselage and a remote switch with a red transmit light, usually located on the right side of the instrument panel. The system is independent from the other airplane systems except for the transmit light which is hot-wired to the airplane battery.

14. INTERIOR

The Bonanza G36 is a six-place airplane. There is outstanding all-around visibility for both the pilot and passenger provided by a large one-piece wrap around windshield and six very large side passenger windows.

Excellent ingress and egress is provided for passengers through a double door featuring a new storage compartment, and to the flight positions through a single piece forward door. In addition, two center windows that open provide multiple emergency egress paths.

Work and discreet ambiance LED lighting is installed in the cabin, cockpit and aft baggage compartment. The cabin window reveals and sidewalls are redesigned with soft flowing lines and incorporate easy to maintain soft touch finish.

Each passenger has access to a personal Multi-Media Jack Panel (perfect for listening to music from a personal iPod/MP3 player, as well as plugging in headphones) Burl wood accents add warmth to the lower cabin sidewall. Beechcraft Millennium Silver control wheels compliment the all new interior.

The completely re-styled matching power quadrant houses a dual pull out cupholder, pen holder and shallow storage tray (perfect for storing a smartphone). Superior attention to fit, form, ergonomics and finish have been accomplished in this completely new and exciting interior.

Baggage Compartment

The aft baggage compartment is accessible through the utility doors on the right side of the fuselage. This area extends aft of the pilot’s seats to the rear bulkhead and features an LED light.

15. EXTERIOR

Distinctive exterior styling featuring polyurethane paint is provided.

16. ADDITIONAL EQUIPMENT

The following items are provided in loose equipment:

- Tow bar.
- Pitot tube cover.
- Gust lock assembly.
- Flight bag.
- Fuel tester and drain tool.
- Passenger briefing cards.

17. EMERGENCY EQUIPMENT

- Fire Extinguisher.

18. DOCUMENTATION & TECH PUBLICATIONS

- Avionics pilot guides.
- Service and safety information materials.
• Electronic Publication System (EPS) including the maintenance library, service bulletin library.
• Aircraft log book.
• Engine log book.
• Engine manual.
• Propeller log book.
• Directory - Beechcraft Corporation Service Centers.

19. MAINTENANCE TRACKING PROGRAM

CAMP Systems™ maintenance tracking program provides computerized aircraft maintenance tracking with all data being exchanged electronically.

The CAMP Systems program is a full service aviation management system that continually monitors the entire range of aircraft maintenance and inspection requirements and brings them to the attention of the operator as they become due. CAMP Systems maintenance tracking program allows you to accurately track and predict the maintenance requirements of your aircraft.

CAMP Systems provides a dedicated analyst assigned to your aircraft to ensure that your aircraft data is as accurate and complete as possible. This is an aircraft specific program that is tailored to each specific aircraft serial number.

The first year of CAMP Systems service is provided at no charge to Buyers of a new Bonanza G36. Subsequent years of CAMP are available through an annual subscription.

This program reflects Beechcraft Corporation’s commitment to provide all Bonanza G36 operators worldwide with the finest support services available.

20. NEW AIRCRAFT LIMITED WARRANTY

All new Bonanza aircraft are covered by the following MANUFACTURER’S LIMITED WARRANTY, which gives Buyer specific legal rights. The law of Kansas applies to this warranty. Note: All warranty work must be accomplished by a Beechcraft Authorized Service Center rated to perform maintenance on Bonanza aircraft. (Ref: CSD-32393 Rev. 07/13).

A. BEECHCRAFT CORPORATION’S (“BEECHCRAFT”) LIMITED WARRANTY

1) Subject to the limitations and conditions hereinafter set forth, Beechcraft warrants, at the time of delivery by Beechcraft, each part of the Aircraft structure (fuselage, empennage, wing and control surfaces) to be free from (i) defects in materials or workmanship, and (ii) defects in design that in view of the state-of-the-art as of the date of manufacture should have been foreseen; provided, however, that the defect must be discovered and reported to Beechcraft within sixty (60) months from the date of delivery of the Aircraft to Buyer.

2) Subject to the limitations and conditions hereinafter set forth, Beechcraft warrants, at the time of delivery by Beechcraft, each part of the Aircraft not mentioned in A. (1) above, except avionics and engines (reference paragraphs D and E below), to be free from (i) defects in materials or workmanship, and (ii) defects in design that in view of the state-of-the-art as of the date of manufacture should have been foreseen; provided, however, that the defect must be discovered and reported to Beechcraft within twenty-four (24) months or eight hundred (800) hours of aircraft operation, whichever time period first expires or event first occurs from the date of delivery of the Aircraft to Buyer; provided further, however, that with respect to exterior paint and interior finish items designed, manufactured or installed by Beechcraft the defect must be discovered and reported to Beechcraft within twenty-four (24) months or four hundred (400) hours of aircraft operation, whichever time period first expires or event first occurs; provided further that with respect to maintenance manuals and other technical publications provided with the Aircraft by Beechcraft the defect must be discovered and reported to Beechcraft within the period of the free update subscription also provided with the aircraft for any such manual or publication.

3) Subject further to A. (4) below, the entire extent of Beechcraft’s liability shall be limited to that of either reimbursing Buyer for its costs of purchasing a rebuilt, overhauled or repaired part from either Hawker Beechcraft Parts & Distribution or a properly rated Beechcraft Authorized Service Center or, at Beechcraft’s election, reimbursing Buyer for its costs of having the part repaired at a properly rated Beechcraft Authorized Service Center. If Beechcraft elects not to repair the part and if neither a rebuilt, overhauled or repaired part is, in Beechcraft’s opinion, timely available then Beechcraft will reimburse Buyer for its costs of purchasing a new part from either Hawker Beechcraft Parts & Distribution or a properly rated Beechcraft Authorized Service Center. The labor necessary to complete a repair or remove from the Aircraft such part or parts and to reinstall in the Aircraft such part or parts, as well as any repair made as the result of
improper installations by Beechcraft, shall be covered by this Warranty, provided the work is performed at a properly rated Beechcraft Authorized Service Center. A claim must be submitted within sixty (60) days after the work is performed and the part to be replaced must be returned shipping prepaid to Hawker Beechcraft Parts & Distribution within sixty (60) days after the occurrence of the defect at Buyer’s own expense (including but not limited to, freight, insurance, customs duties, etc.) unless otherwise directed by Beechcraft Warranty. BEECHCRAFT’S LIMITED WARRANTY will apply to any part repaired or replaced by a properly rated Beechcraft Authorized Service Center pursuant to BEECHCRAFT’S LIMITED WARRANTY: however, the applicable warranty for such part repaired or replaced shall be limited to the unexpired portion of BEECHCRAFT’S LIMITED WARRANTY described in A. (1) or A. (2) above, as applicable. In other words, the warranty period of the part repaired or replaced does not start over from the date of reinstallation.

4) This limited warranty is pro-rated for life-limited parts. For Aircraft parts or systems that have life limitations (including replacement or overhaul intervals) established in the airworthiness section of the Beechcraft maintenance manual or in other technical publications including Safety Communiqués and Service Bulletins, Beechcraft’s liability hereunder shall be further limited to the remaining pro-rated life of the defective part, calculated as of the date the defect was discovered and reported to Beechcraft. For example, if a life limited part is found and reported to be defective at 1500 hours of a 2000 hour replacement or overhaul interval (or 750 cycles of a 1000 cycle interval or nine months of a one year age interval), 75% of its life will have been consumed and Beechcraft will provide 25% of the cost for replacing the part. If the part’s life limit is measured by alternative means (such as hours, cycles and/or age), the pro-ration calculation shall be based on the factor nearest to expiring as of the time the defect is discovered and reported. Nothing about this provision shall be construed to extend the total warranty period beyond the applicable time periods stated in A. (1) or A. (2) above. All warranties expire as noted in A. (1) or A. (2) above, regardless of any remaining life limits on parts. All life limited parts replaced during the New Aircraft Warranty are covered only by their own spare parts warranties; if and as applicable and shall have no coverage under this warranty.

5) Routine services (such as inspections, cleaning, adjustments, etc.) and replacement of items which deteriorate from expected normal wear and tear or exposure (such as paint, upholstery, trim items, bulbs, tires, brakes, hoses, belts, batteries, etc.) are not covered by this LIMITED WARRANTY. Such routine services and replacements required during the course of operation are not considered to be the result of any defect in the Aircraft.

B. LIMITATIONS APPLICABLE TO BEECHCRAFT’S LIMITED WARRANTY

1) Beechcraft will be relieved of all obligations and liability under this Warranty if:

i. The alleged defect in the part is due to expected normal wear and tear (such as that is normally expected to paint, upholstery, trim items, etc.), to environmentally induced corrosion or erosion, to foreign object damage, or to misuse or neglect on the part of someone other than Beechcraft; or

ii. Beechcraft’s and/or Beechcraft’s supplier’s identification mark or name or serial number has been removed from the part in question; or

iii. The Aircraft and/or equipment have not been maintained, operated or stored either in accordance with applicable manuals, communications or other written instructions (including, but not limited to, Mandatory Service Bulletins), of Beechcraft or any manufacturer of the part involved, or in accordance with applicable Federal Aviation Regulations and advisory circulars unless Buyer shows that such maintenance, operation or storage was not a contributory cause of the defect; or

iv. The part or system in question has been modified or altered after delivery other than by the Manufacturer or in accordance with a modification or alteration scheme approved in writing by the Manufacturer. In addition, any part or system of the aircraft affected by a modified or altered part or system will not be covered by Beechcraft’s Limited Warranty; or

v. The Aircraft is used for purposes other than conventional owner/operator usage. Usage not considered conventional owner/operator includes, but is not limited to, scheduled airline operations or military operations.

2) For the purpose of this Warranty, no part of the Aircraft or equipment will be regarded as breaching the LIMITED WARRANTY merely because, subsequent to its delivery, some modification or alteration becomes necessary for product improvements or in order to meet a change in the requirements of any applicable Federal Aviation Regulation.
3) TO THE EXTENT ALLOWED BY APPLICABLE LAW, BUYER WAIVES AS TO BEECHCRAFT AND SELLER ALL OTHER WARRANTIES, WHETHER OF MERCHANTABILITY, FITNESS OR OTHERWISE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF.

4) TO THE EXTENT ALLOWED BY APPLICABLE LAW, THE OBLIGATIONS OF BEECHCRAFT SET FORTH HEREIN SHALL BE THE EXCLUSIVE REMEDIES FOR ANY BREACH OF WARRANTY HEREUNDER, AND, TO THE SAME EXTENT, NEITHER BEECHCRAFT NOR SELLER SHALL BE LIABLE FOR ANY INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL, MULTIPLE OR PUNITIVE DAMAGES, INCLUDING, WITHOUT LIMITATION, ANY DAMAGES FOR DIMINUITION OF MARKET VALUE, LOSS OF USE OR LOSS OF PROFITS, OR ANY DAMAGES TO THE AIRCRAFT CLAIMED BY BUYER OR ANY OTHER PERSON OR ENTITY UPON THE THEORIES OF NEGLIGENCE OR STRICT LIABILITY IN TORT.

5) ANY ACTION BY BUYER FOR BREACH OF THIS WARRANTY BE EITHER BEECHCRAFT OR SELLER MUST BE COMMENCED WITHIN ONE (1) YEAR AFTER THE CAUSE OF ACTION ACCRUES. THE CAUSE OF ACTION ACCRUES WHEN THE BUYER FIRST LEARNS THAT THE WARRANTY HAS BEEN BREACHED.

C. TRANSFER OF WARRANTY

In the event the Aircraft is resold to another person, firm or entity prior to the expiration of the Limited Warranty described in paragraph A above, any remaining term of that Limited Warranty is automatically transferred to subsequent purchasers of the Aircraft, but subject to the limitations described in paragraph B above.

D. AVIONICS EQUIPMENT WARRANTED BY APPLICABLE MANUFACTURERS

Factory installed avionics equipment is warranted by the respective manufacturers for varying periods of time. Details of these programs are available from the applicable manufacturer.

E. ENGINES WARRANTED BY CONTINENTAL MOTORS, INC.

Engines are warranted by their manufacturer. Details of this policy are available from the engine manufacturer.

F. PROPELLER WARRANTED BY HARTZELL PROPELLERS, INC.

Propeller is warranted by the manufacturer. Details of this policy are available from the propeller manufacturer.

21. CREW TRAINING AGREEMENT

Entitlement Training Provided

Seller shall provide to Buyer, as a part of the Total Aircraft Purchase Price, a Standard Entitlement training package consisting of a training/familiarization program for one (1) suitably qualified pilot. Training shall be conducted by FlightSafety International (FSI) located in Wichita, Kansas or at another FSI training location as appropriate. For specific details regarding the training course, course requirements, or completion options contact FSI.

Standard Entitlement – Pilot Training – one (1) pilot – seven (7) training day Initial course

FSI shall employ its standard established training curriculum which is reasonably calculated to lead to achievement of a Bonanza G36 training completion certificate and currently consists of seven (7) days of ground school and flight simulator training. Course length does not include simulator check days, additional flight training, or weekends. Should additional ground or flight training be required beyond the established course syllabus, the schedule, number of flight hours, and other details will be mutually agreed at such time between Buyer and FSI. All additional ground or flight training shall be the responsibility of Buyer, will be accomplished in a Buyer provided aircraft, and all expenses associated with the additional training and/or operation of the aircraft shall be the responsibility of Buyer.

Performance Standards and Completion of Training

FSI is responsible for developing course curriculum and satisfactory performance standards in accordance with all current FAA Regulations, Seller requirements, and appropriate industry standards. Seller and FSI cannot guarantee or otherwise assure successful completion of training or final qualification for any license, certificate, or rating. Neither Seller nor FSI shall be responsible for the competency of Buyer’s crew during and after training. Neither does Seller or FSI assume any responsibility or liability for training delay or incompletion due to factors beyond their control.

Duration of Training Services

Buyer must avail itself of entire Seller provided Entitlement training package within, and no later than, nine (9) months following the delivery date of the
aircraft. No credit or any other financial adjustment shall be allowed for any Entitlement training not used by Buyer within the nine (9) months time period. FSI shall schedule all Entitlement training, provide Buyer specific details regarding the training course, course requirements, and completion options, and endeavor to schedule training at a convenient time for Buyer.

Buyer’s Expenses

Buyer shall be responsible for all expenses incurred by Buyer’s personnel in conjunction with Entitlement training, including but not limited to: food, lodging, transportation, car rental, and all costs of operating, maintaining, and insuring the aircraft if utilized for training. Buyer shall also be responsible for all costs involved in acquiring an interpreter if Buyer’s personnel are not conversant in English.

In consideration of the above, Buyer hereby releases and will indemnify and save harmless the Seller and FSI, their respective officers, employees, agents, subcontractors, and insurers against any and from all liabilities, claims, actions, and causes of action whatsoever, including any claims for damage to the Aircraft, regardless of the cause thereof (excluding however, any liability of claim relating to the manufacture of the Aircraft and except the negligence of willful misconduct of Seller and their respective officers, employees, agents, and insurers) and all expenses in connection therewith (including reasonable counsel fees) arising directly or indirectly out of or in connection with the use of the Aircraft for the training described above.

Buyer’s execution of Aircraft Purchase Agreement constitutes Buyer’s acceptance of the foregoing terms and conditions pertaining to the training to be furnished thereunder.

ADDITIONAL TRAINING

In the event Buyer requires additional training for the purpose of satisfying the certification and/or operational requirements of Buyer’s cognizant civil aviation authority (“CAA”) that is outside the scope the standard FlightSafety International Pilot and Maintenance Training described above, the cost of any additional training will be Buyer’s responsibility. If Seller learns of the need for additional training, Seller will exercise reasonable efforts to facilitate arrangements for the additional training between Buyer and FlightSafety International. However, because training requirements vary, it is Buyer’s responsibility to determine its CAA's requirements for any additional training and then enroll in any applicable training class(es).