SPECIFICATION
AND DESCRIPTION

UNITS 525B-0451 TO TBD

OCTOBER 2015
INTRODUCTION

This Specification and Description is published for the purpose of providing general information for the evaluation of the design, performance, and equipment of the Cessna Citation CJ3+, Units 525B-0451 to TBD. This document supersedes all previous Specification and Description documents and describes only the Cessna Citation CJ3+ Model 525B, its powerplants and equipment.

Due to the time span between the date of this Specification and Description and the scheduled delivery date of the Aircraft, Cessna reserves the right to revise the Specification whenever occasioned by product improvements, government regulations or other good cause as long as such revisions do not result in a material reduction in performance.

In the event of any conflict or discrepancy between this document and the terms and conditions of the purchase agreement to which it is incorporated, the terms and conditions of the purchase agreement govern.

For additional information contact:

Cessna Aircraft Company
P.O. Box 7706
Wichita, Kansas 67277-7706

Telephone: 316-517-6449
Telefax: 316-517-6640

WARNING: This product contains Halon 1211, Halon 1301, and also R-134A. Furthermore, the product was manufactured with CFC-12 and 1-1-1 Trichloroethane, substances which harm public health and environment by destroying ozone in the upper atmosphere.
# TABLE OF CONTENTS

**CESSNA CITATION CJ3+ SPECIFICATION AND DESCRIPTION**

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Description</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Certification</td>
<td>3</td>
</tr>
<tr>
<td>1.2 Approximate Dimensions</td>
<td>6</td>
</tr>
<tr>
<td>1.3 Design Weights and Capacities</td>
<td>6</td>
</tr>
<tr>
<td>2. Performance</td>
<td>7</td>
</tr>
<tr>
<td>3. Structural Design Criteria</td>
<td>8</td>
</tr>
<tr>
<td>4. Fuselage</td>
<td>8</td>
</tr>
<tr>
<td>5. Wing</td>
<td>9</td>
</tr>
<tr>
<td>6. Empennage</td>
<td>9</td>
</tr>
<tr>
<td>7. Landing Gear</td>
<td>9</td>
</tr>
<tr>
<td>8. Powerplants</td>
<td>10</td>
</tr>
<tr>
<td>9. Systems</td>
<td>10</td>
</tr>
<tr>
<td>9.1 Flight Controls</td>
<td>10</td>
</tr>
<tr>
<td>9.2 Fuel System</td>
<td>10</td>
</tr>
<tr>
<td>9.3 Hydraulic System</td>
<td>11</td>
</tr>
<tr>
<td>9.4 Electrical System</td>
<td>11</td>
</tr>
<tr>
<td>9.5 Pressurization and Environmental System</td>
<td>11</td>
</tr>
<tr>
<td>9.6 Oxygen System</td>
<td>11</td>
</tr>
<tr>
<td>9.7 Ice and Rain Protection</td>
<td>11</td>
</tr>
<tr>
<td>10. Avionics</td>
<td>13</td>
</tr>
<tr>
<td>10.1 General</td>
<td>14</td>
</tr>
<tr>
<td>10.2 Instrument and Control Panels</td>
<td>14</td>
</tr>
<tr>
<td>10.3 Avionics</td>
<td>14</td>
</tr>
<tr>
<td>10.4 Miscellaneous Cockpit Equipment</td>
<td>18</td>
</tr>
<tr>
<td>11. Interior</td>
<td>19</td>
</tr>
<tr>
<td>11.1 General</td>
<td>19</td>
</tr>
<tr>
<td>11.2 Standard Interior Configuration</td>
<td>20</td>
</tr>
<tr>
<td>11.3 Baggage</td>
<td>21</td>
</tr>
<tr>
<td>12. Exterior</td>
<td>21</td>
</tr>
<tr>
<td>13. Additional Equipment</td>
<td>21</td>
</tr>
<tr>
<td>14. Emergency Equipment</td>
<td>21</td>
</tr>
<tr>
<td>15. Documentation and Technical Publications</td>
<td>22</td>
</tr>
<tr>
<td>16. Computerized Maintenance Record Service</td>
<td>22</td>
</tr>
<tr>
<td>17. Limited Warranties</td>
<td>23</td>
</tr>
<tr>
<td>17.1 Cessna Citation CJ3+ Limited Warranty</td>
<td>23</td>
</tr>
<tr>
<td>11.2 Williams FJ44-3A Limited Engine Warranty</td>
<td>24</td>
</tr>
<tr>
<td>18. Citation CJ3+ Crew Training Agreement</td>
<td>27</td>
</tr>
</tbody>
</table>

FIGURE I — CITATION CJ3+ EXTERIOR DIMENSIONS .................................................. 4
FIGURE II — CITATION CJ3+ INTERIOR DIMENSIONS .......................................... 5
FIGURE III — CITATION CJ3+ INSTRUMENT PANEL AND PEDESTAL LAYOUT .... 13
FIGURE IV — CITATION CJ3+ STANDARD FLOORPLAN ..................................... 19
1. GENERAL DESCRIPTION

The Cessna Citation CJ3+ is a low-wing aircraft with retractable tricycle landing gear and a “T” tail. A pressurized cabin accommodates a crew of two and up to eight passengers (six is standard). Two Williams International Co., LLC (Williams) FJ44-3A Full Authority Digital Engine Controls (FADEC) controlled turbofan engines are pylon-mounted on the rear fuselage. Fuel stored in the wings offers generous range for missions typical of this class aircraft. Space for baggage is provided in the nose and tailcone with additional storage space available in the cabin. The CJ3+ also incorporates an all new LED lighting suite allowing for reduced power consumption, reduced weight and a replacement time of 8,000 hours.

Multiple structural load paths and system redundancies have been built into the aluminum airframe. Metal bonding techniques have been used in many areas for added strength and reduced weight. Certain parts with non-critical loads such as the nose radome and fairings are made of composite materials to save weight. The airframe design incorporates anti-corrosion applications and lightning protection.

Cessna offers a third-party training package for pilots and mechanics, and various manufacturers’ warranties as described in this Specification and Description book. Cessna’s worldwide network of company-owned and authorized service facilities provides a complete source for all servicing needs.

1.1 CERTIFICATION

The Model 525B is certified to the requirements of U.S. 14 CFR Part 23, Commuter Category, including day, night, VFR, IFR, and flight into known icing conditions. It is also certified for single pilot operations for U.S. registered aircraft. The Citation CJ3+ is compliant with all RVSM certification requirements. (Note: specific approval is required for operation within RVSM airspace; Cessna offers a no charge service to assist with this process.)

The Purchaser is responsible for obtaining aircraft operating approval from the relevant civil aviation authority. International certification requirements may include modifications and/or additional equipment; such costs are the responsibility of the Purchaser.
1. GENERAL DESCRIPTION (CONTINUED)
1. GENERAL DESCRIPTION (CONTINUED)
1. GENERAL DESCRIPTION (CONTINUED)

1.2 APPROXIMATE DIMENSIONS

Overall Height ................................................................. 15 ft 2 in (4.62 m)
Overall Length .............................................................. 51 ft 2 in (15.59 m)
Overall Width ................................................................. 53 ft 4 in (16.26 m)

WING

Span (does not include tip lights) ........................................ 52 ft 11 in (16.13 m)
Area .................................................................................. 294.1 ft² (27.32 m²)
Sweepback (at 31% chord) .................................................. 0 degrees

HORIZONTAL TAIL

Span (overall) ................................................................. 20 ft 10 in (6.35 m)
Area .................................................................................. 70.7 ft² (6.57 m²)
Sweepback (at 25% chord) .................................................. 20 degrees

VERTICAL TAIL

Height ........................................................................... 7 ft 5 in (2.26 m)
Area .................................................................................. 56.3 ft² (5.23 m²)
Sweepback (at 25% chord) .................................................. 49 degrees

CABIN INTERIOR

Height (maximum over aisle) .............................................. 57 in (1.45 m)
Width (trim to trim) .......................................................... 58 in (1.47 m)
Length (forward pressure bulkhead to aft pressure bulkhead) .................................................. 20 ft 7 in (6.27 m)

LANDING GEAR

Tread (main to main) ........................................................ 16 ft 0 in (4.88 m)
Wheelbase (nose to main) ................................................... 20 ft 0 in (6.10 m)

1.3 DESIGN WEIGHTS AND CAPACITIES

Maximum Ramp Weight .................................................. 14,070 lb (6,382 kg)
Maximum Takeoff Weight ............................................... 13,870 lb (6,291 kg)
Maximum Landing Weight ............................................... 12,750 lb (5,783 kg)
Maximum Zero Fuel Weight .............................................. 10,510 lb (4,767 kg)
Standard Empty Weight* ................................................ 8,185 lb (3,713 kg)
Useful Load ....................................................................... 5,885 lb (2,669 kg)
Fuel Capacity (useable) at 6.70 lb/gal ............................... 4,710 lb (2,136 kg)

* Standard empty weight includes unusable fuel, full oil, standard interior, and standard avionics.
2. PERFORMANCE

All performance data is based on a standard aircraft configuration, operating in International Standard Atmosphere (ISA) conditions with zero wind. Takeoff and landing field lengths are based on a level, hard surface, dry runway. Actual performance will vary with individual airplanes and other factors such as environmental conditions, aircraft configuration, and operational/ATC procedures.

Takeoff Runway Length ................................................................................................................................................................. 3,180 ft (969 m)
   (Maximum Takeoff Weight, Sea Level, ISA,
   Balanced Field Length per 14 CFR Part 25, 15° Flaps)

Climb Performance ................................................................................................................................................................. 27 min to 45,000 ft (13,716 m)
   (Maximum Takeoff Weight, Sea Level, ISA)

Maximum Altitude ................................................................................................................................................................. 45,000 ft (13,716 m)

Maximum Cruise Speed (± 3%) ................................................................. 417 KTAS (772 km/hr or 480 mph)
   (Mid-Cruise Weight, 33,000 ft (10,058 m), ISA)

NBAA IFR Range (100 nm alternate) (± 4%) .................................................. 1,875 nm (3,473 km or 2,158 mi)
   (Maximum Takeoff Weight, Full Fuel, Optimal Climb
   and Descent, Maximum Cruise Thrust at 45,000 feet)

Landing Runway Length ................................................................................................................................................................. 2,770 ft (844 m)
   (Maximum Landing Weight, Sea Level, ISA, per 14 CFR Part 25)

Certified Noise Levels

Flyover ................................................................................................................................. 74.0 EPNdB

Lateral ................................................................................................................................. 88.7 EPNdB

Approach ................................................................................................................................. 88.6 EPNdB
3. STRUCTURAL DESIGN CRITERIA

The Citation CJ3+ airframe is conventional in design, incorporating aluminum alloys, steel and other materials as appropriate. Engineering principles using multiple load paths, low stress levels and small panel size are incorporated in the primary structure. The structure supports a nominal maximum cabin pressure differential of 8.9 psi (.61 bar).

Limit Speeds

\[
\begin{align*}
V_{\text{MO}} & \quad 8,000 \text{ ft (2,438 m)} \text{ to } 29,300 \text{ ft (8,931 m)} \quad 278 \text{ KIAS (515 km/hr, 320 mph)} \\
M_{\text{MO}} & \quad 29,300 \text{ ft (8,392 m)} \text{ and above} \quad \text{Mach 0.737 (indicated)}
\end{align*}
\]

Flap Extension Speeds

\[
\begin{align*}
V_{\text{FE}} & \quad 0^\circ \text{ to } 15^\circ \text{ Extension} \quad 200 \text{ KIAS (370 km/hr, 230 mph)} \\
V_{\text{FE}} & \quad 15^\circ \text{ to } 35^\circ \text{ Extension} \quad 161 \text{ KIAS (298 km/hr, 185 mph)}
\end{align*}
\]

Landing Gear Operating and Extended Speeds

\[
\begin{align*}
V_{\text{LO}} & \quad \text{(retracting)} \quad 200 \text{ KIAS (370 km/hr, 230 mph)} \\
V_{\text{LO}} & \quad \text{(extending)} \quad 200 \text{ KIAS (370 km/hr, 230 mph)} \\
V_{\text{LE}} & \quad \text{(extended)} \quad 200 \text{ KIAS (370 km/hr, 230 mph)}
\end{align*}
\]

4. FUSELAGE

The fuselage has a constant circular cross section and is attached to the wing without any cutouts for the spar. A dropped aisle from just behind the cockpit through the lavatory makes moving about the cabin easier. The keyed cabin door is located on the forward left-hand side of the fuselage. It has 12 locking pins and two pressure seals and is hinged forward with a folding three-step Airstair mounted just inside the entrance. A plug-type emergency exit is located on the aft right-hand side of the cabin. The windshields are designed to meet bird resistance requirements of 14 CFR Part 25. Framing structures surround the main door opening, emergency exit, and windshield providing structural continuity.

The nose section includes a generous baggage compartment from which the avionics bay, oxygen bottle, and windshield alcohol supply are accessible. Behind the composite radome is the high-resolution weather radar antenna and processor.

The tailcone houses the major components of the hydraulic, environmental, electrical distribution, flight controls, and engine fire extinguishing systems. A baggage compartment is also located in the tailcone. External access to both the equipment and the baggage area is provided through a baggage door on the lower left-hand side of the tailcone and removable exterior panels.
5. WING

The straight wing design of the CJ3+ incorporates a natural laminar flow airfoil. The wing structure is a three spar design with a shallow drop in the center section to permit attachment of the fuselage without interruption of the cabin cross-section.

Integral fuel tanks are located in each wing. Control surfaces on the wing include outboard ailerons, wide span flaps with a lift-dump feature, and upper and lower surface speed brakes. The left-hand aileron incorporates a trim tab.

The wing leading edges are anti-iced using engine bleed air. Composite fairings blend the wing and fuselage for minimum drag. The landing lights consist of industry proven OSRAM LED technology and are integrated with a Pulselight system which are mounted below the fuselage in the fairing. The wing tips include LED position and anti-collision lights and static wicks.

6. EMPENNAGE

The empennage section is a T-tail design with a one-piece horizontal stabilizer. The horizontal stabilizer’s leading edge is equipped with pneumatic de-ice boots. The rudder includes a bias system and both the rudder and the elevators have pilot-controlled trim tabs. A tail logo light is standard with a red LED ground recognition light mounted on the top.

7. LANDING GEAR

The main and nose landing gear each use a single wheel assembly. The landing gear retraction system is electrically controlled and hydraulically actuated. Each main gear is a trailing link type and retracts inboard into the wing. The nose gear retracts forward into the fuselage and, when retracted, is enclosed by doors. The nose gear has a chine tire for water and slush deflection. Emergency landing gear extension is accomplished by manual release of the uplocks for free fall followed by use of the pneumatic blow-down system.

Multiple disc, digital anti-skid brakes are installed on the main gear wheels. An independent hydraulic system provides normal power braking with a pneumatic system for back-up.

The landing gear may be extended at speeds up to 250 KIAS. A warning horn will sound with the gear retracted if airspeed is below 130 KIAS and either throttle is retarded below approximately 85% N2. The warning horn may be silenced if the flap position is less than 20 degrees. The nose gear is mechanically steered by the rudder pedals to 20 degrees either side of center. For ground handling maximum deflection of the nosewheel is 95 degrees either side of center.
8. POWERPLANTS

Two Williams FJ44-3A turbofan engines are installed, one on each side of the rear fuselage, in easily accessible nacelles. This engine is a medium bypass, twin-spool design with 5 compression stages and 3 turbine stages and produces 2,820 pounds (12.54 kN) of takeoff thrust at sea level, static conditions, flat rated up to 79°F (26°C).

Dual channel Full Authority Digital Engine Controls (FADECs) provide automation and efficiency in engine management. Detents in the throttle quadrant for takeoff (TO), maximum continuous (MCT), and high speed cruise (CRU) give pilots the optimal power settings for each phase of flight based on ambient conditions. The system also provides time-limited dispatch (TLD), diagnostics, and engine synchronization. Electrical power for the FADECs comes from engine driven permanent magnet alternators (PMAs) rectified to DC. There are two PMAs mounted to each engine. In the event that both PMAs fail on one engine, the FADEC on that side will draw from main DC power.

The FJ44-3A engine incorporates a modular design and multiple borescope ports for easier maintenance and inspections. Engine overhaul is required at 4,000 hour intervals. A continuous loop fire detection system monitors the nacelle area to detect and warn if a fire occurs. A fire extinguishing system is provided.

9. SYSTEMS

9.1 FLIGHT CONTROLS

Dual flight controls are provided consisting of control wheel columns, adjustable rudder pedals, brakes and mechanical nose wheel steering. Pushrod, bellcrank, sector, and cable systems are used to actuate the rudder, elevators, and ailerons. Corrosion resistant stainless steel cables are used in all primary and secondary systems.

Trim wheels installed on the pedestal control mechanical trim tabs for the ailerons, elevators, and rudder. The elevator trim also has an electric motor controlled by switches on each pilots’ control wheel. A yaw damper system in the tail works with the autopilot to augment stability at high altitudes, however, it’s not required for dispatch. A bias system is incorporated into the rudder for improved runway performance and automatic control enhancement during engine out conditions. An integral control lock below the pilot’s panel holds the rudder, elevators, ailerons and throttles during storage.

Wide span flaps are controlled by a handle on the pedestal with detents at 15, 35, and 55 degrees. Any intermediate position from zero to 35 degrees may be selected in flight. The 55 degree position, or ground flaps is for lift dump and increased drag only during landing and will automatically cause the speed brakes to deploy. Speed brakes extend above and below each wing and may be extended in flight at any speed. However, they will automatically retract anytime either engine’s N2 speed is 85% or greater. The flaps and the speed brakes are electrically controlled and hydraulically actuated.

9.2 FUEL SYSTEM

There are two integral fuel tanks, one per wing. System operation is fully automatic throughout the normal flight profile with each engine receiving fuel from its respective wing tank. Fuel is heated through an oil heat exchanger and anti-ice additive is not required. Refueling is accomplished through over wing filler ports.
9. SYSTEMS (CONTINUED)

9.3 HYDRAULIC SYSTEM

The hydraulic system is an open-center design providing 1,500 psi (103.4 bar) on demand to operate the landing gear, speed brakes, and flaps. Two engine-driven pumps, one located on each engine, supply hydraulic pressure. Either pump can supply enough pressure and flow to operate the system. An independent hydraulic system, driven by an electric motor, operates the wheel brakes and anti-skid system. The brake hydraulic system has a pneumatically charged accumulator which improves system performance during high demand operation.

9.4 ELECTRICAL SYSTEM

The CJ3+ electrical power generation and distribution system features traditional parallel bus architecture designed to provide 600 amperes at 28.5 volts DC from two engine driven 300 ampere starter/generators. One 44 ampere-hour nickel cadmium battery is used for initial engine starts and serves as a limited backup to the generators.

Each generator is connected to a remote digital generator control unit (GCU) in the tailcone. The two GCUs are connected to each other to allow proportionate load sharing. If one generator becomes disabled in flight, the vapor cycle air conditioning system, if in use, and the entire suite, will automatically load shed to prevent overloading the remaining generator. All other essential electrical systems are supplied by the remaining generator through the respective main and crossfeed busses.

All system controls are located on the left-hand switch panel with gauges for system voltage and each generator’s amperage. Left and right circuit breaker panels are positioned on the cockpit sidewall within easy reach of each pilot. A junction box is accessible through the aft baggage compartment. The battery, with quick disconnect, is accessible through the aft wall of the baggage compartment. An external power receptacle is provided below the left engine pylon.

A sealed lead acid 24V, 16a-hr auxiliary battery is installed in the nose over the landing gear well. During normal operation the battery works in conjunction with the primary ships battery to allow for all aircraft systems, including avionics, to be powered on during engine starts. The auxiliary battery is also used to provide additional battery capacity during emergency operation.

A 500 watt inverter supplies 110 volt AC power to three outlets: one in the copilot’s sidewall and two in the cabin next to each table.

9.5 PRESSURIZATION AND ENVIRONMENTAL SYSTEM

Engine bleed air is tapped to pressurize the cabin. Cabin altitude and rate of change are automatically managed by a digital, auto-schedule controller. A nominal maximum differential pressure of 8.9 psi (.61 bar) permits a sea level cabin altitude up to 23,586 feet (7,189 m), increasing to 8,000 feet (2,438 m) at the maximum cruise altitude (45,000 feet, 13,716 m).

Engine bleed air is also used to heat the cabin and to defog the windows. A vapor cycle air conditioning system provides cooling and may be operated anytime in the air and on the ground when ground power is connected or when the right engine is running. In flight, the system automatically shuts down if one generator falls off line. A cockpit control allows for either automatic or manual temperature control. A four position switch in the cockpit varies the air distribution between the cockpit and cabin.

9.6 OXYGEN SYSTEM

A 50 cubic foot (1,420 Liter) oxygen bottle, located in the nose, is provided with a high pressure gauge and bottle-mounted pressure regulator. Quick-donning pressure demand masks with microphones are provided at each crew seat, while automatic dropout constant-flow oxygen masks are provided at each passenger seat and above the toilet. Oxygen flow to the cabin is controlled by a sequencing regulator valve for optimal passenger usage.

9.7 ICE AND RAIN PROTECTION

Engine bleed air is used for anti-ice protection of the engine inlets, pylon inlet ducts, wings, and windshields. The pilot’s windscreen also utilizes a back-up alcohol anti-ice system. The horizontal stabilizer leading edges are fitted with pneumatic de-ice boots, inflated by engine bleed air (23 psi service air system). A timer manages the inflation cycle. The pitot
tubes, static ports, and the AOA sensor are electrically anti-iced. Two windshield ice detection lights are mounted on the glareshield and a wing inspection light is positioned on the left side of the fuselage to assist in the detection of ice buildup during night flights.

Windshield rain removal is accomplished with engine bleed air during normal operations and by mechanically actuated rain doors to provide deflected airflow in heavy rain.
10. AVIONICS

FIGURE III — CITATION CJ3+ INSTRUMENT PANEL AND PEDESTAL LAYOUT
10. AVIONICS (CONTINUED)

10.1 GENERAL

The Citation CJ3+ features the Garmin G3000 advanced avionics system, a large-format glass cockpit with integrated sensors and lightweight modular avionics. The system presents to the crew all the flight, navigation, and situational inputs, as well as aircraft systems information, for a precise picture of the total flying environment. Three liquid crystal displays (LCDs) offer high resolution, wide viewing angles, and clear sunlight readability. Complete flight management functionality and a three axis digital autopilot ease the workload for the pilots.

10.2 INSTRUMENT AND CONTROL PANELS

A. Installed on Center Glareshield Panel:
   • LH and RH Master Caution / Master Warning Lights
   • LH and RH Engine Fire Control Switches
   • Reversionary and Dimming Controls
   • Flight Director / Autopilot Controller
   • Electronic Standby Instrument System
   • LH and RH Display Control Units

B. Installed on Instrument Panel (left to right):
   • Electrical Power Panel
   • LH Primary Flight Display (PFD)
   • Multi-Function Display (MFD)
   • RH Primary Flight Display (PFD)

C. Installed on Tilt Panel (left to right):
   • Pressurization Controls
   • Ice Protection Controls
   • Windshield Anti-ice Controls
   • Fuel Controls
   • Manual Temp Controls
   • Landing Gear Control Module
   • Lighting Controls
   • Emergency Comm Switch
   • Event Marker
   • Cockpit Voice Recorder Controller (Optional)
   • Flight Hour Meter
   • ELT Remote Switch

D. Installed on Pedestal:
   • GTC 570 (2) each
   • Engine Start Control
   • Engine Power Levers
   • Flap Control Handles
   • Speed Brake Control
   • Elevator Trim Control and Indicator
   • Takeoff / Go-Around Button
   • Rudder Trim Control
   • Aileron Trim Control

E. Installed Beneath the Instrument Panel:
   • Emergency Brake Handle
   • Parking Brake Handle
   • Emergency Gear Release
   • Control Locks

10.3 AVIONICS

Described below is the Citation CJ3+’s standard avionics suite as referred to in the Limited Warranties (section 17).

A. ELECTRONIC FLIGHT INSTRUMENT SYSTEM (EFIS)

The G3000 system utilizes three 14.1 inch (diagonal) Control display units (GDU1400W) as Primary Flight Displays (PFD) and Multi-Function Display (MFD). All three are WXGA Liquid Crystal Displays (LCD) with LED backlighting and a resolution of 1280 x 800.

Behind the MFDs and within the pressure vessel are the two remote audio processors (GMA 36). Located in the nose of the aircraft are the main Garmin Interface Adapter Units (GIA 63W) incorporating all communication, navigation, automatic flight control, and extensive data management functions. These two interface adapter units are directly linked to the AHRS, ADCs, transponders, audio controllers, and Engine/Interface units (GEA 71, located in the tail cone). Data from each source is processed and sent to the PFDs and MFD. Ethernet architecture and various ARINC cabling are used for high-speed data transfer. Most components are line replaceable units (LRUs) contained in individual trays and racks. Two glareshield cooling fans continuously circulate cockpit air around the avionics.
B. PRIMARY FLIGHT DISPLAY (PFD)

The following elements are shown on the PFDs in normal mode: attitude (full screen horizon line), altitude tape (feet or meters with six-second trend vectors), airspeed tape (with six-second trend vectors), Mach, vertical speed, flap limit speeds, slip/skid, heading, horizontal situation, glide slope, flight director (cross pointer or single cue), navigation and communication frequencies (active and standby), navigation station/waypoint identification, track, distance, transponder code, altimeter setting (inches or hectopascals), clock, timer (up or down), temperature (RAT), ISA deviation, and many other items. V-speeds can be automatically generated or are entered manually by the pilot and will appear on the airspeed tape. At the bottom edge of the display several menu items are shown directly above corresponding soft keys on the bezel. The soft keys are used to select the menu and submenu items. Selection of the “Inset” soft key places a smaller version of the MFD navigation map in the lower corner of the PFD for added situational awareness. The Crew Alerting (CAS) information is presented on the PFDs.

C. MULTI-FUNCTION DISPLAY

The MFD serves primarily as a moving map and EIS platform. The moving map may be populated with a wide variety of information including traffic, terrain, airborne weather radar, data link weather, political and airspace boundaries, airports, navais, way points, cities, roads, Garmin FlightCharts and Safe Taxi, and many others, all at various ranges. The pilot may choose a north-up or track-up orientation. These and many other options may be selected using the soft keys along the bottom edge of the bezel or by using the touch screen GTC 570. A subscription through Garmin is required for database updates.

D. SECONDARY CONTROLLER

The GCU 275 is a PFD controller used to perform inset map panning and ranging, to adjust the barometric setting, and to access often used and high-workload flight planning functions such as the active flight plan on the lower inset window on the PFD. The GCU 275 will also control the MFD unit when it is operating in reversionary mode and presenting primary flight information.

E. ENGINE INDICATING (EIS) AND CREW ALERTING SYSTEM (CAS)

The EIS information is presented on the left side of the MFD and includes: engine speeds and temperatures; oil pressures and temperatures; fuel flow, quantity and temperature; oxygen pressure and electrical and pressurization systems data. The Crew Alerting (CAS) is presented on the lower part of each PFD and shows colored text messages as determined by system inputs. Up to 10 messages are shown in the CAS box; additional messages may be scrolled into view by using the PFD soft keys. Pre-programmed logic determines the color, order, and flashing characteristics of all messages.

Each display may show the essential components of the EIS and CAS in reversionary mode. Reversion may be selected manually for either the pilot or copilot side using switches located below the glareshield.

F. AIR DATA AND ATTITUDE INFORMATION

The pitot-static system includes three electrically heated pitot and static sources. Each is cross-plumbed into dual air data computers (ADCs) located in the forward nose behind the radar bulkhead. The ADCs perform source error corrections and calculate indicated airspeed, true airspeed, mach number, vertical speed, density altitude, pressure altitude, and total temperature for output to the Interface Adapters and the PFDs.

In addition, ADC output is received by the Attitude and Heading Reference Systems (AHRS). Two solid state digital AHRS reside in the nose and are each tied to the three-axis magnetometers located in the tail. The AHRS are capable of in-flight and on-the-move initialization. Output from the AHRS is received and processed by the Interface Adapter Units and the PFDs. The system meets RVSM requirements.

Input from an electrically heated stall warning vane on the right side of the forward cabin is processed by the Interface Adapter Units for display on the PFDs and for input to the aural warning system.
10. AVIONICS (CONTINUED)

G. VHS COMMUNICATION TRANSCEIVERS

Dual VHF communications transceivers are part of the Interface Adapter units and produce 16 watts of transmission power. They are compliant with European 8.33 kHz channel spacing requirements. Tuning and management is accomplished through dual touch screen GTC 570 controllers. There is also an emergency radio tuning switch located on the right side tilt panel that will tune the VHF radio to 121.5 bypassing all other tuning controls.

H. REMOTE AUDIO PROCESSOR

Dual GMA 36 Remote Audio Processors controlled through the dual GTC 570 touch screen controllers provide transmitter section for microphone inputs and direct audio outputs from all receivers to the speakers and/or headphones at each crew station. The system includes crew and cabin intercom and the ability to record and playback up to 2½ minutes of incoming audio. Two handheld microphones are connected to the audio processors and installed on each of the control columns.

I. NAVIGATION

Dual Garmin navigation receivers located in the Interface Adapter Units provide VOR, Localizer and Glideslope functions. The Marker Beacon receivers are integrated into the Audio Processors. Navigation information is displayed on both PFDs and the reversionary mode of the MFD. Tuning and management is accomplished through the dual touch screen controllers.

J. GLOBAL POSITIONING SYSTEM (GPS)

Each Interface Adapter Unit includes a WAAS capable GPS receiver. Both receivers are capable of monitoring 12 channels to provide satellite-based position data for use by the FMS.

K. FLIGHT MANAGEMENT SYSTEM (FMS)

The Garmin FMS provides a multiple waypoint navigation solution suitable for enroute, terminal, and WAAS precision approach navigation. The touch screen controllers (GTC570) on the pedestal are the FMS interface to the MFD. It includes controls for selection and manipulation of moving map functions such as range and pan. Each PFD calculates and displays the current flight plan using the onside GPS sensor. Automatic GPS sensor reversion occurs in the event the onside sensor is degraded or failed.

Airway flight planning, plain language identifiers, airport communication and navigation frequency lookup features are included. Flight plans may be created, stored, accessed, and activated as needed and are shown on the MFD moving map. Both lateral and vertical modes (to the final approach fix) may be displayed and coupled to the autopilot. Present position referenced geopolitical and airspace boundaries, and airways may be overlaid on any of the FMS map formats.

Precision guidance from the FMS meets the operational requirements of oceanic/remote, NAT MNPS, RNP10, and RNP5/BRNAV. The navigation database requires periodic updates via subscription and must be uploaded to the aircraft through the upper SD flash card port on each of the three displays.

L. AUTOMATIC FLIGHT CONTROL SYSTEM (AFCS)

Automatic flight control is provided in the CJ3+ by the Garmin GFC 700 system. The autopilot system (AP) includes dual flight director computers (integrated in the Interface Adapter Units), a single Garmin Mode Controller (GMC 710), and four electric servos for roll, yaw, pitch, and pitch trim.

The GMC 710 Mode Controller, located just below the glareshield, enables the selection of flight director and autopilot modes for either pilot. The AFCS modes may be hand flown using the flight director command bars or coupled to the autopilot for automatic flight. Selection of the autopilot will automatically enable the flight director. Modes of operation include attitude, heading, altitude, speed, and vertical speed, as well as VNAV and the various NAV radio and GPS navigation modes. In addition, the AFCS provides a takeoff/go-around mode activated by a button on the left throttle handle. Control Wheel Steering (CWS) and AP disconnect functions are controlled via switches on each yoke.

The pitch trim servo also provides electric pitch trim when the autopilot is not engaged, through yoke mounted trim switches. The yaw servo may be activated by the pilot dur-
10. AVIONICS (CONTINUED)

ing normal maneuvers to provide Dutch roll damping and turn coordination. Or, it will automatically engage with auto-pilot activation.

M. TRANSPONDERS WITH ADS-B OUT CAPABILITY
Dual Mode S transponders with antenna diversity and 1090 MHz Extended Squitter (ES) Automatic Dependent Surveillance – Broadcast Out (ADS-B Out) transmission capability in accordance with FAA TSO-166B are included. The transponders meet European Mode S mandates for Enhanced Surveillance (EHS).

N. WEATHER AVOIDANCE RADAR
The Garmin GWX 70 is a solid state radar with 40 watts of transmit power and Altitude Compensated Tilt (ACT). The radar supports display of different weather data on multiple display units simultaneously. Doppler capability is an option on the GWX 70 which adds the ability to see frequency shifts that are caused when an object reflecting the radar pulse is moving relative to the radar itself. The addition of Doppler adds the two distinct advantages of Turbulence Detection and Ground Clutter Suppression.

O. CHART VIEW
Provides the ability to show approach charts, SIDs, STARs, and airport diagrams as moving maps on the Multi-Function Display (MFD). Aircraft position is graphically overlaid in the plan view format. A profile view may also be shown, and both formats may be zoomed and panned. Chart View is integrated with the FMS to automatically load charts according to the flight plan. A database subscription service is required.

P. DME
A single Collins DME-4000 provides the ability to monitor as many as three active DME stations simultaneously. This allows full time distance display of pilot-selected VHF navaids, along with the enhancement of FMS position determination through the use of non-displayed DME channels. Tuning and management is accomplished through the GTCs.

Q. RADIO ALTIMETER
The Collins ALT-4000 Radio Altimeter system provides height above the terrain from 2,500 feet (762 m) to touchdown. This information is integrated with functions in the EFIS, TCAS, and TAWS and is presented on the PFDs.

R. TRAFFIC COLLISION AVOIDANCE SYSTEM (TCAS II)
The Garmin GTS 8000 TCAS II system improves situational awareness by tracking transponder equipped aircraft in the vicinity. Traffic Alerts (TAs) and Resolution Advisories (RAs) are given aurally through the aircraft audio system and visually on the flight displays. When other TCAS II-equipped aircraft are encountered, complementary RA maneuvers are coordinated by each system. This system is compliant with Change 7.1 requirements.

S. TERRAIN AVOIDANCE WARNING SYSTEM (TAWS)
The Garmin Terrain Avoidance Warning System is a Class B TAWS. The system provides basic terrain awareness and ground proximity alerting. Terrain information is displayed in standard colors on the MFD and gives both audible and visual warnings as required. The terrain database resides in the secure digital data storage cards located in the lower port on the right hand side of each PFD and MFD bezel. Data is independently processed by each of the three Display Units for display either when pilot selected or when activated by ground proximity criteria.

T. AVIONICS DISPATCH SWITCH
A Dispatch Power switch in the Electrical Power Panel allows for limited avionics equipment to be powered for ground radio calls and FMS flight planning operations without the battery drain of powering the entire avionics suite without engines running.

U. ELECTRONIC STANDBY INSTRUMENT
The L-3 Communications ESI-1000 Trilogy Electronic Standby Instrument (ESI) is a solid-state instrument that provides backup for attitude, altitude, airspeed, and slip/skid informa-
10. AVIONICS (CONTINUED)

A bezel-mounted light sensor provides automatic dimming with manual offset controlled via the menu access mode. Four soft key buttons on the front of the bezel provide the user with quick access for setting display and button brightness, barometric setting and access to menu options.

V. EMERGENCY LOCATOR TRANSMITTER (ELT)

The Artex C406-N is a three frequency ELT that transmits on the emergency frequencies of 121.5 and 243.0 MHz and the satellite frequency of 406 MHz. It is located in the tailcone and interfaces with the GIA to transmit the last known aircraft position on the satellite frequency if activated. (Interface feature disallowed by some certifying agencies.) The C406-N has a remote control switch panel on the right hand tilt panel and a six-year lithium battery pack.

W. MAINTENANCE DIAGNOSTICS

The G3000 system includes the capability to record specific maintenance diagnostic information, which can be reviewed on the MFD while on the ground and downloaded for review off the Aircraft. In addition, the CJ3+ incorporates full time data storage through a Cessna Aircraft Recording System (AReS). AReS records useful data during the previous 25+ flight hours in non volatile memory for advanced troubleshooting and analysis by systems specialists from the Seller Service and Support network.

Purchaser agrees that Seller has a perpetual license to use all information contained in the Aircraft recording and/or diagnostic systems for any reason, including maintenance and accident investigation. Purchaser expressly provides Seller with licensed permission to download, use, and/or read such information at any time. Purchaser further agrees this perpetual license runs with and is automatically transferred with the title to the Aircraft and is binding on any and all subsequent purchasers of the Aircraft.

10.4 MISCELLANEOUS COCKPIT EQUIPMENT

- Magnetic Compass
- Eye Position Reference Indicator
- Glareshied
- Ventilation Air Outlets (2 Overhead & 2 Torso)
- Oxygen System Control
- Oxygen Masks (2)
- Parking Brake Control
- Control Lock
- Emergency Brake Control
- Emergency Gear Extension Control
- Reading Lights (2)
- Floodlight
11. INTERIOR

11.1 CABIN

The Citation CJ3+’s cockpit is designed to provide the crew with the tools for the job in a comfortable working environment. Single pilot capabilities mean that all essential controls are within easy reach from the left seat. Each crew seat is fully adjustable and includes a five-point restraint system. Left and right hand reading lights, air outlets, sidewall map pockets, and dual cupholders are provided as well as a two-book chart case behind the copilot’s seat.

The standard configuration in the Citation CJ3+ features a six-place center club and a refreshment center across from the entry door. A storage cabinet with adjustable shelves faces the refreshment center, just behind the pilot’s seat. A center flush-mounted coat rod is provided in the aft cabin lavatory. Sliding divider doors provide privacy.

Each passenger seat is mounted on a pedestal with the ability to track forward, aft, and laterally. Each seat may be reclined up to 45 degrees depending on its position on the pedestal. (The aft cabin divider restricts seats #7 and #8—see diagram.) The two center seats (#5 and #6) are mounted on floor tracks for greater flexibility. Individual air outlets and reading lights are provided in the Passenger Service Units (PSU) above each passenger. Dropout, constant-flow oxygen masks are also installed in the PSU for emergency use. Two cupholders are built into the side ledge next to each seat. In the lower sidewall next to seats #5 and #6 are two 110 VAC outlets, one on each side. Also built into the sideledges in the center club are foldout executive tables with leather inserts.

A five inch dropped aisle, extending from the cockpit divider aft through the lavatory, provides a cabin height of 57 inches. The constant cross section of the cabin provides a continuous width of 58 inches. (Measurements represent distance between softgoods.) The cabin is approximately 15 feet 8 inches long measured from the cockpit divider to the aft pressure bulkhead and offers flexibility for a variety of interior arrangements.

Included are dropped aisle lighting and indirect overhead LED lights in the PSU with full dimming capability. Entrance and emergency exit lights are also provided in the passenger cabin. Fourteen elliptical windows offer exceptional natural lighting throughout the cabin. Three panes per window and bagged insulation in the walls contribute to a quiet, comfortable cabin environment even at high speeds. With the exception of the entrance door, each window has pleated manual window shades.

An extensive selection of carpets, fabrics and leathers, all burn-resistant, are included in the base price of the aircraft.
11. INTERIOR (CONTINUED)

11.2 STANDARD INTERIOR CONFIGURATION

The following items are standard in the Citation CJ3+ Numbered items refer to the cabin diagram (Figure IV).

Cockpit (NOT SHOWN)

Dual cupholders for each crew seat

Two crew seats
- Five-Point restraint System
- Stowable inboard armrest
- Oxygen mask
- Fwd & aft tracking lever
- Recline adjustment lever
- Height adjustment lever
- Adjustable lumbar
- Seat Back Pocket
- Overwater life vest located in seat base

RH two-book navigation chart case

Not Shown:
- Cockpit assist handle
- Headset hooks
- Swing arm sunvisors
- Single 110 volt AC outlet in copilot sidewall
- One-piece, half-length cockpit curtain
- Fire extinguisher
- Two audio inputs and USB charging ports

Cabin Area

1. LH forward storage/evaporator cabinet
   - General storage with adjustable shelves
   - Certificate holder

2. RH forward refreshment center with:
   - Heated liquid container
   - Two dispensers for disposable cups
   - Beverage can storage
   - Catering drawer
   - Divided ice chest drawer with removable wine caddy, manual overboard drain and removable liner
   - Drip tray with manual overboard drain
   - Trash container
   - Work surface
   - Miscellaneous general storage

3. Six pedestal seats: two aft facing (#3 and #4), and four forward facing (#5, #6, #7, and #8) with:
   - Adjustable headrest
   - Single stowable inboard armrest
   - Forward/aft and inboard/outboard tracking on pedestal
   - Floor tracking (seats #5 and #6 only)
   - Adjustable seat back recline
   - Seat restraint system including seat belt and retracting shoulder harness with inertial reel
   - Life preserver stored in seat base shroud

4. LH/RH sideledge with dual cupholders at each pedestal seat location

5. LH/RH executive tables with leather table top insert

6. LH/RH aft cabin dividers with mirror treatment and sliding privacy doors

7. LH aft, belted flushing toilet
   - Toilet tissue storage area
   - Relief tube with overboard drain

8. RH aft, avionics cabinet containing diagnostics and common PC boards

Not Shown:
- 110 volt AC outlets in lower sidewall at seats 5 and 6 with capability of 5 amp maximum (total for all outlets)
- Passenger service units (PSU) containing an oxygen mask, air outlet, and reading light at each passenger seat location and in the aft lavatory area
- Manual pleated cabin window shades
- Indirect overhead LED lighting
- Dropped aisle LED lighting
- Veneer cabintery finish
- Brushed aluminum hardware finish
- Spare center aisle carpet assembly
- Aft center flush mounted coat rod
- Chime unit located in PSU
- Fasten seat belt/no smoking and emergency exit signs
- Single insertable ashtray
- Fireblocking on all passenger seats
- Cabin fire extinguisher
- Airstair cabin entry step
11. INTERIOR (CONTINUED)

11.3 BAGGAGE

Two separate baggage areas provide a total volume of 65.0 cubic feet (1.84 m$^3$) and a total weight capacity of 1,000 pounds (454 kg).

- An LED illuminated 15.0 cubic foot (.42 m$^3$), 400 pound (182 kg) capacity lockable nose baggage compartment is externally accessible from either side of the aircraft.

- An LED illuminated 50.0 cubic foot (1.42 m$^3$), 600 pound (272 kg) capacity baggage compartment is located in the tailcone and is externally accessible through a 20 x 26 inch (.51 x .66 m) lockable door on the left side beneath the engine pylon. Its shape accommodates skis up to 215 cm long.

12. EXTERIOR

Distinctive exterior styling is provided featuring polyurethane paint in a variety of colors.

13. ADDITIONAL EQUIPMENT

- Two Sennheiser HMEC 26-2-1 Noise Reduction Headsets
- Pitot Covers
- Engine Inlet, Pylon Inlet, Exhaust, and Generator Inlet covers
- Static Discharge Wick Covers
- Tow Straps
- Tailcone Baggage Restraint Strap
- Emergency Escape Hatch Ground-Locking Pin
- Jack Pad Adapter (Nose)

14. EMERGENCY EQUIPMENT

- Fire Extinguisher in Cockpit and Cabin
- Individual Overwater Life Vests For All Seats
- Crew and Passenger Oxygen
- Exterior LED Emergency Exit Lighting
- Emergency Lighting Battery Pack
15. DOCUMENTATION AND TECHNICAL PUBLICATIONS

- U.S. Standard Airworthiness Certificate, FAA8100-2; Export Certificate of Airworthiness, FAA8130-4 or Special Airworthiness Certificate FAA8130-7 as appropriate
- Airplane Flight Manual
- Pilot's Operating Manual
- Abbreviated Procedures Checklist
- Weight and Balance Report
- Weight and Balance program *
- Planning and Performance booklet
- Cabin Operating Manual
- Passenger Information Cards
- Log Books (Aircraft and Engines)
- Service Bulletins and Service Letters - Engine **
- Maintenance Manual - Airframe *
- Maintenance Manual Chapter 5 - Time Limits and Maintenance Checks (hardcopy)
- Maintenance Manual - Interior *

* These documents are provided on CD-ROM or DVD.
** These publications / revisions are provided by the supplier following delivery.

16. COMPUTERIZED MAINTENANCE RECORD SERVICE

Seller will provide an online computerized maintenance record service for one full year from the date of delivery of a Citation CJ3+ to the Purchaser.

This service will provide management and operations personnel with the reports necessary for the efficient control of maintenance activities. The service provides an accurate and simple method of keeping up with aircraft components, inspections, service bulletins and airworthiness directives while providing permanent aircraft records of maintenance performed.

Reports, available on demand, show the current status, upcoming scheduled maintenance activity and the history of the aircraft maintenance activity in an online format, which is printable locally. Semi-annual reports concerning projected annual maintenance requirements, component removal history and fleet-wide component reliability are provided as part of the service.

Services are provided through a secure Internet Site requiring a computer with Internet connectivity. A local printer is required to print paper versions of the online reports and documentation. If receiving these services through the Internet is not feasible for an operation, a paper-based service delivered through the U.S. mail is available at an additional fee.
17. LIMITED WARRANTIES

The standard Citation CJ3+ Aircraft Limited Warranty which covers the aircraft, other than Williams engines and associated engine accessories which are warranted separately, is set forth below. Seller specifically excludes all vendor subscription services and the availability of vendor service providers from Seller’s Limited Aircraft Warranty. Following Seller’s Limited Warranty, the engine and engine accessory warranty of Williams are set forth. Both warranties are incorporated by reference and made part of the Purchase Agreement. All warranties are administered by Seller’s Citation Warranty Department.

17.1 CESSNA CITATION CJ3+ LIMITED WARRANTY (LIMITED WARRANTY)

Seller expressly warrants each new Citation CJ3+ Aircraft (exclusive of engines and engine accessories supplied by Williams which are covered by their separate warranty), including factory-installed avionics and other factory-installed optional equipment to be free from defects in material and workmanship under normal use and service, except as set forth herein, to the first user for the following periods after delivery:

(a) Five years or 5,000 operating hours, whichever occurs first, for Aircraft components manufactured by Seller;

(b) Five years or 5,000 operating hours, whichever occurs first, for Garmin standard avionics;

(c) Two years for all other Standard Avionics;

(d) Two years for all Optional Avionics;

(e) Three years or 1,800 operating hours for Actuators, ACMs, Brakes, GCU, Oleos, Starter Generators, Valves, Windshields, and Vendor items including engine accessories supplied by Seller unless otherwise stated in the Optional Equipment and Selection Guide; and

(f) One year for Customer Requests (CRQs), Interior Components, Interior Furnishings, and Paint.

Any remaining term of this Limited Warranty is automatically transferred to subsequent purchasers of the aircraft.

Seller’s obligation under this Limited Warranty is limited to repairing or replacing, at Seller’s sole discretion, any part or parts which:

(1) within the applicable warranty period,

(2) are returned at the owner’s expense to the facility, from which the replacement part is procured, whether Textron Aviation Service Parts & Programs or a Textron Aviation-owned Citation service facility or a Citation service facility authorized by Seller to perform service on the aircraft (collectively “Support Facility”) or as directed by Seller,

(3) are accompanied by a completed claim form containing the following information: aircraft model, aircraft serial number, customer number, failed part number and serial number if applicable, failure date, sales order number, purchased part number and serial number if applicable, failure codes, any diagnostic data, and action codes, and

(4) are found by Seller or its designee to be defective. Replacement parts must be procured through a Support Facility and are only warranted for the remainder of the applicable original aircraft warranty period.

A new warranty period is not established for replacement parts. The repair or replacement of defective parts under this Limited Warranty will be made by any Textron Aviation-owned Citation service facility or a Citation service facility authorized by Seller to perform service on the aircraft without charge for parts and/or labor for removal, installation, and/or repair. All expedited freight transportation expenses, import duties, customs brokerage fees, sales taxes, and use taxes, if any, on such warranty repairs or replacement parts are the warranty recipient’s sole responsibility. Seller’s performance under this limited warranty may be delayed or prohibited if export licenses are required to be approved by the US Government before specific spare parts can be shipped to Purchaser in some foreign countries. (Location of Textron Aviation-owned and Textron Aviation-authorized Citation service facilities will be furnished by Seller upon request.)

This Limited Warranty applies to only items detailed herein which have been used, maintained, and operated in accordance with Seller and other applicable manuals, bulletins, and other written instructions. However, this Limited War-
17. LIMITED WARRANTIES (CONTINUED)

Limited Warranty does not apply to items that have been subjected to misuse, abuse, negligence, accident, or neglect; to items that have been installed, repaired, or altered by repair facilities not authorized by Seller; or to items that, in the sole judgment of Seller, have been installed, repaired, or altered by other than Textron Aviation-owned service facilities contrary to applicable manuals, bulletins, and/or other written instructions provided by Seller. Limited Warranty does not apply to normal maintenance services (such as engine adjustments, cleaning, control rigging, brake and other mechanical adjustments, and maintenance inspections); or to the replacement of service items (such as brake linings, lights, filters, de-ice boots, hoses, belts, tires, and rubber-like items); or to normal deterioration of appurtenances (such as paint, cabinetry, and upholstery), corrosion or structural components due to wear, exposure, and neglect.

WITH THE EXCEPTION OF THE WARRANTY OF TITLE AND TO THE EXTENT ALLOWED BY APPLICABLE LAW, THIS LIMITED WARRANTY IS EXPRESSLY IN LIEU OF ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, IN FACT OR BY LAW, APPLICABLE TO THE AIRCRAFT. SELLER SPECIFICALLY DISCLAIMS AND EXCLUDES ALL OTHER WARRANTIES, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THE ABOVE-MENTIONED REMEDIES OF REPAIR OR REPLACEMENT ARE THE ONLY REMEDIES UNDER THIS LIMITED WARRANTY. SELLER EXPRESSLY AND SPECIFICALLY DISCLAIMS ALL OTHER REMEDIES, OBLIGATIONS, AND LIABILITIES, INCLUDING, BUT NOT LIMITED TO, LOSS OF AIRCRAFT USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS, LOSS OF PROFITS, LOSS OF GOODWILL, AND ANY AND ALL OTHER CONSEQUENTIAL AND INCIDENTAL DAMAGES. SELLER NEITHER ASSUMES NOR AUTHORIZES ANYONE ELSE TO ASSUME ON ITS BEHALF ANY FURTHER OBLIGATIONS OR LIABILITIES PERTAINING TO THE AIRCRAFT NOT CONTAINED IN THIS LIMITED WARRANTY. THIS LIMITED WARRANTY SHALL BE CONSTRUED UNDER THE LAWS OF THE STATE OF KANSAS AND ANY DISPUTES AND/OR CLAIMS ARISING THEREFROM SHALL BE EXCLUSIVELY RESOLVED IN THE STATE AND/OR FEDERAL COURTS LOCATED IN WICHITA, KANSAS.

17.2 WILLIAMS’ FJ44-3A LIMITED ENGINE WARRANTY

This limited warranty covers Williams International Co., LLC’s (Williams) FJ44-3A Engines, Spare Parts and Exchange Parts installed in Cessna aircraft which are sold for Commercial Business Jet use. Capitalized terms used throughout this warranty are defined in Section II hereof.

SECTION I: ALLOWANCES

1. ENGINE WARRANTY

Williams warrants to the Owner or Operator that each new Engine sold for installation on Aircraft (as either original equipment or a Spare Part) will at the time of delivery be free from defects in material, workmanship and title. Warranty shall run to the original purchaser, its successors, assigns, and customers when they are the Owner or Operator. This warranty shall expire 36 months from the date of delivery to the original retail purchaser or First User or 1,500 Engine Operating Hours (EOH) prorated on a straight line basis to 2,000 EOH, whichever occurs first. Williams will, at its option, during the warranty period:

1.1 Undertake Repair or replacement of an Engine, which in the sole discretion of Williams is found to have suffered a Failure pursuant to the definition of “Failure” in Section II, Paragraph 3.4 of this warranty;

1.2 For engines which have 1,500 EOH or less, grant an allowance of 100 percent of the Price of Parts suffering Failure or Resultant Damage (or at its option Repair or exchange such Parts free of charge) plus reasonable cost of labor used during Repair at Williams’ authorized Repair Facility;

1.3 For engines which have 1,500 to 2,000 EOH, grant an allowance of, based on a straight line basis, the Price of Parts suffering Failure or Resultant Damage, or at its option, the Price to Repair or exchange such failed or damaged Parts.

2. SPARE PARTS AND EXCHANGE PARTS WARRANTY
17. LIMITED WARRANTIES (CONTINUED)

Williams warrants to the Owner or Operator that each new Spare Part or Exchange Part sold for installation in Engines will at the time of delivery be free from defects in material, workmanship and title. Warranty shall run to the original purchaser, its successors, assigns, and customers when they are the Owner or Operator. This warranty shall expire 36 months from the date of shipment from Williams or 12 months from the day of installation of the new Spare Part or Exchange Part in an Engine, whichever occurs first. Williams will during this warranty period grant an allowance of 100 percent on the Price of the Spare Part or Exchange Part which, in the sole discretion of Williams is found to have suffered a Failure or the Resultant Damage of a warranted Part or at its option Repair or exchange such Spare Part or Exchange Part free of charge.

SECTION II: DEFINITIONS

3. In this warranty, the following definitions shall apply to the exclusion of all other meanings, and words in the plural shall have similar meanings:

3.1 “Commercial Use” means the operation of the Engines in aircraft licensed by FAA or its equivalent for general civilian and Commercial Use excluding aerial dusting and spraying and any other type of flying requiring special authorization or dispensation by FAA or its equivalent;

3.2 “Engine” means a Williams’ FJ44-3A Engine;

3.3 “Engine Operating Hours” means the total number of hours run by an Engine since new; and

3.4 “Failure” means the breakdown or deterioration of a Part or Spare Part or Exchange Part which is established to the reasonable satisfaction of Williams to be due to a defect in material or workmanship in the manufacture of that Part or Spare Part or Exchange Part and which either:

3.4.1 Necessitates the removal of the Engine or Part or Spare Part or Exchange Part from the aircraft before the next scheduled shop visit of the Engine, or is discovered during a Repair performed in connection with such removal; or

3.4.2 Is discovered during a scheduled shop visit and necessitates the scrapping of the Part or Spare Part or Exchange Part because in the opinion of Williams, the Part or Spare Part or Exchange Part is beyond Repair in accordance with Repair instructions approved in writing by Williams.

3.5 “First User” means that individual, firm or agency effecting initial operation of the Engine, exclusive of operation incidental to production and initial distribution of the aircraft in which the Engine is installed.

3.6 “Operator” means that individual, firm or agency actually operating the Engine as Part of an Aircraft.

3.7 “Owner” means the Owner of the aircraft in which the Engine is installed who is registered with the Federal Aviation Agency (FAA) or its equivalent at the time of the warranty claim, or the legal Owner of the Engine.

3.8 “Part” means any Part manufactured or supplied by Williams, originally assembled into or attached to an Engine. “Spare Part” means any Part manufactured or supplied by Williams, not originally assembled into or attached to an Engine. “Exchange Part” means any Part or Spare Part which has been newly overhauled in accordance with 14 CFR Part 43. Where two or more Parts are permanently attached together by a manufacturing process, Part or Spare Part or Exchange Part means the minimum assembly listed in the Williams’ Illustrated Parts Catalog.

3.9 “Price” as used in 1, Engine Warranty, and 2, Spare Parts and Exchange Parts Warranty, of Section I, Allowances, means the net selling Price to the Operator (excluding import duties and sales or other taxes imposed in the Operator’s country), last published by Williams, prior to the time when the Failure is discovered.

3.10 “Repair” means the work comprising the tear down of one or more major assemblies which is required to render serviceable an Engine or Part or Spare Part or Exchange Part which has suffered Failure, necessitating the removal of that Engine from the aircraft.

3.11 “Resultant Damage” means the damage suffered by a Part, necessitating the scrapping of that Part because that Part is beyond economic Repair in accordance with Repair instructions approved in writing by Williams, pro-
vided such damage is caused by the Failure of another warranted Part.

SECTION III: GOVERNING CONDITIONS

4. The obligations of Williams hereunder shall be subject to the following conditions:

4.1 The Operator shall present any claim to Williams in writing within 30 days after the date upon which the claim is discovered, shall keep and disclose accurate records of Engine operation and maintenance adequate to support such claims, and shall ship the failed Engine or Part for Repair or replacement within 30 days after notice;

4.2 Williams shall have no obligation under this Warranty in respect of any Engine, Part, Spare Part or Exchange Part which in the reasonable opinion of Williams:

4.2.1 Has not been properly installed, operated, and maintained in accordance with the recommendations of Williams, as contained in its manuals or other written instructions, including operating procedures;

4.2.2 Has been repaired or altered outside the authorized facilities of Williams;

4.2.3 Has been subject to misuse, negligence, accident;

4.2.4 Has suffered damage due to the ingestion of a foreign body; or

4.2.5 Was acquired by the Operator other than from Williams, or through channels not specifically approved in writing by Williams.

4.3 Except as expressly stated in Section I, Allowances, hereof, Williams shall not be liable for any other expenses, taxes, duties or liabilities. In particular costs of removal or replacement from/in an aircraft and transportation costs to/from a Repair facility are excluded from Section I, Allowances.

4.4 The Operator shall notify a Williams’ Customer Support representative of a potential warranty problem prior to removing or shipping Engines pursuant to a warranty claim. The Operator shall make available as requested all Engines, Parts, Spare Parts and Exchange Parts for inspection and preliminary analysis relative to said claim.

4.5 Upon request of Williams, any Part, Spare Part or Exchange Part for which an allowance has been granted by Williams, hereunder, shall be returned by the Operator at Williams’ expense, and upon such return any such Part, Spare Part or Exchange Part shall become the property of Williams.

4.6 Duration of the warranty for Products replaced under the terms of this Warranty shall be for the unused portion of the new Engine warranty, Spare Part or Exchange Part warranty as applicable. Replacement of an Engine, Spare Part or Exchange Part does not commence a new warranty period.

4.7 Williams reserves the right to make changes in the design and to add improvements without incurring any obligation to incorporate the same on other Engines or Parts sold by Williams.

4.8 ALL OTHER WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, SUCH AS WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY EXCLUDED AND DISCLAIMED TO THE EXTENT THEY EXCEED THE WARRANTIES GRANTED HEREIN. THIS WARRANTY COMPRIS WILLIAMS’ ENTIRE LIABILITY IN RELATION TO ANY MALFUNCTION, FAILURE OR DEFECT TO THE EXCLUSION OF ALL OTHER LIABILITY, IN TORT (WHETHER FOR NEGLIGENCE, PRODUCT LIABILITY OR OTHERWISE) OR IN CONTRACT, INCLUDING LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL LOSS, DAMAGE OR EXPENSE.

4.9 NO AGREEMENT EXTENDING THIS WARRANTY SHALL BE BINDING UPON WILLIAMS, UNLESS IN WRITING AND SIGNED BY A DULY AUTHORIZED OFFICER OR REPRESENTATIVE OF WILLIAMS.
18. CITATION CJ3+ CREW TRAINING AGREEMENT

Training will be furnished to First Retail Purchaser (hereinafter called the “Purchaser”), subject to the following:

1. A crew shall consist of up to two (2) licensed pilots with current private or commercial, instrument and multi-engine ratings and a minimum of 1,000 hours total airplane pilot time and up to two (2) mechanics with A&P licenses or equivalent experience.

2. Training shall be conducted by Seller or by its designated training organization, at Seller’s option.
   a. A simulator shall be utilized which is FAA certified to provide training for the CE-525 FAA type rating.
   b. In lieu of a model specific simulator, training may be provided in the most appropriate type simulator available capable of accomplishing the FAA type rating, with differences training provided.
   c. Additional training as requested by the customer, shall be conducted in the customer’s aircraft.
   d. Location of training to be Wichita, Kansas, or unless mutually agreed otherwise. The organization conducting the training is hereinafter called the “Trainer.”

3. Training furnished shall consist of the following:
   a. Flight training to flight proficiency in accordance with Trainer’s standards aimed toward type certification of two (2) Captains under applicable Federal Air Regulations not to exceed five (5) total hours for the two (2) pilots.
   b. Flight simulation training to simulator proficiency in accordance with Trainer’s standards but not to exceed thirty (30) total hours for both pilots.
   c. Ground School training for each pilot and classroom instruction for each mechanic in accordance with Trainer’s standards.

4. Purchaser shall be responsible for:
   a. Transportation of crew to and from training site and for living expenses during training.
   b. Providing an interpreter during the course of training for any of Purchaser’s crew not conversant with the English language.
   c. Payment to Trainer for additional simulator or flight training beyond that required to attain proficiency in accordance with Trainer’s standards for the course in which the pilot is enrolled.
   d. All aircraft required for flight training as well as all landing fees, fuel costs, aircraft maintenance and insurance and all other direct costs of operation, including applicable taxes required in connection with the operation of said aircraft during such flight training.
   e. Extra charges, if any, for scheduling pilots in separate training classes.
   f. Reimbursing to Seller the retail rate for training in the event of training before actual sale/delivery, if sale/delivery is cancelled.

5. Seller or Trainer shall schedule all training, furnish Purchaser schedules of training and endeavor to schedule training at a convenient time for Purchaser. A cancellation fee of Two Hundred Dollars ($200) will be paid to Seller by Purchaser if crew fails to appear for scheduled training, except for reasons beyond its reasonable control, unless Purchaser gives Seller written notice of cancellation received at Wichita, Kansas, at least seven (7) days prior to scheduled training. In the event of such cancellation Seller shall reschedule training for the next available class.

6. Neither Seller nor Trainer shall be responsible for the competency of Purchaser’s crew during and after training. Trainer will make the same efforts to qualify Purchaser’s crew as it makes in training of other Citation CJ3+ crews; however, Seller and Trainer cannot guarantee Purchaser’s crew shall qualify for any license, certificate or rating.

7. Neither Seller nor Trainer shall be responsible for any delay in providing training due to causes beyond its or their reasonable control.

8. All Training furnished to Purchaser under the Agree-
18. CITATION CJ3+ CREW TRAINING AGREEMENT (CONTINUED)

ment will be scheduled to commence no earlier than three (3) months prior to delivery and will be completed within twelve (12) months after delivery of the Aircraft unless mutually agreed otherwise.

Signature of the Purchaser to the Purchase Agreement to which this Training Agreement is attached as a part of the Specification and Description shall constitute acceptance by Purchaser of the foregoing terms and conditions relative to training to be furnished by Seller. Purchaser agrees that Seller can provide Purchaser’s name and address to the training organization for the purpose of coordinating training.